ArtificailModel / app.py
durrani's picture
appo.py
7f08c80
raw
history blame
2.75 kB
import numpy as np
import torch
import gradio as gr
def predict_score(x1, x2):
Theta0 = torch.tensor(-0.5738734424645411)
Theta1 = torch.tensor(2.1659122905141825)
Theta2 = torch.tensor(0.0)
y_actual = Theta0 + Theta1 * x1 + Theta2 * 23 # Adjust the constant value here if needed
return y_actual.item()
input1 = gr.inputs.Number(label='Number of New Students')
input2 = gr.inputs.Number(label='Number of Temperature')
output = gr.outputs.Textbox(label='Predicted Rooms')
gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch()
def pred(y_actual,y_pred, x1, x2):
# Input data
x1 = torch.tensor([50, 60, 70, 80, 90])
x2 = torch.tensor([20, 21, 22, 23, 24])
y_actual = torch.tensor([30, 35, 40, 45, 50])
# Learning rate and maximum number of iterations
alpha = 0.01
max_iters = 1000
# Initial values for Theta0, Theta1, and Theta2
Theta0 = torch.tensor(0.0, requires_grad=True)
Theta1 = torch.tensor(0.0, requires_grad=True)
Theta2 = torch.tensor(0.0, requires_grad=True)
# Start the iteration counter
iter_count = 0
# Loop until convergence or maximum number of iterations
while iter_count < max_iters:
# Compute the predicted output
y_pred = Theta0 + Theta1 * x1 + Theta2 * x2
# Compute the errors
errors = y_pred - y_actual
# Compute the cost function
cost = torch.sum(errors ** 2) / (2 * len(x1))
# Print the cost function every 100 iterations
if iter_count % 100 == 0:
print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0.item(), Theta1.item(), Theta2.item()))
# Check for convergence (if the cost is decreasing by less than 0.0001)
if iter_count > 0 and torch.abs(cost - prev_cost) < 0.0001:
print("Converged after {} iterations".format(iter_count))
break
# Perform automatic differentiation to compute gradients
cost.backward()
# Update Theta0, Theta1, and Theta2 using gradient descent
with torch.no_grad():
Theta0 -= alpha * Theta0.grad
Theta1 -= alpha * Theta1.grad
Theta2 -= alpha * Theta2.grad
# Reset gradients for the next iteration
Theta0.grad.zero_()
Theta1.grad.zero_()
Theta2.grad.zero_()
# Update the iteration counter and previous cost
iter_count += 1
prev_cost = cost
gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch()
# Print the final values of Theta0, Theta1, and Theta2
print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item()))
print("Final Cost: Cost = {}".format(cost.item()))
print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))