Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import gradio as gr | |
def predict_score(x1, x2): | |
Theta0 = torch.tensor(-0.5738734424645411) | |
Theta1 = torch.tensor(2.1659122905141825) | |
Theta2 = torch.tensor(0.0) | |
y_actual = Theta0 + Theta1 * x1 + Theta2 * 23 # Adjust the constant value here if needed | |
return y_actual.item() | |
input1 = gr.inputs.Number(label='Number of New Students') | |
input2 = gr.inputs.Number(label='Number of Temperature') | |
output = gr.outputs.Textbox(label='Predicted Rooms') | |
gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch() | |
def pred(y_actual,y_pred, x1, x2): | |
# Input data | |
x1 = torch.tensor([50, 60, 70, 80, 90]) | |
x2 = torch.tensor([20, 21, 22, 23, 24]) | |
y_actual = torch.tensor([30, 35, 40, 45, 50]) | |
# Learning rate and maximum number of iterations | |
alpha = 0.01 | |
max_iters = 1000 | |
# Initial values for Theta0, Theta1, and Theta2 | |
Theta0 = torch.tensor(0.0, requires_grad=True) | |
Theta1 = torch.tensor(0.0, requires_grad=True) | |
Theta2 = torch.tensor(0.0, requires_grad=True) | |
# Start the iteration counter | |
iter_count = 0 | |
# Loop until convergence or maximum number of iterations | |
while iter_count < max_iters: | |
# Compute the predicted output | |
y_pred = Theta0 + Theta1 * x1 + Theta2 * x2 | |
# Compute the errors | |
errors = y_pred - y_actual | |
# Compute the cost function | |
cost = torch.sum(errors ** 2) / (2 * len(x1)) | |
# Print the cost function every 100 iterations | |
if iter_count % 100 == 0: | |
print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0.item(), Theta1.item(), Theta2.item())) | |
# Check for convergence (if the cost is decreasing by less than 0.0001) | |
if iter_count > 0 and torch.abs(cost - prev_cost) < 0.0001: | |
print("Converged after {} iterations".format(iter_count)) | |
break | |
# Perform automatic differentiation to compute gradients | |
cost.backward() | |
# Update Theta0, Theta1, and Theta2 using gradient descent | |
with torch.no_grad(): | |
Theta0 -= alpha * Theta0.grad | |
Theta1 -= alpha * Theta1.grad | |
Theta2 -= alpha * Theta2.grad | |
# Reset gradients for the next iteration | |
Theta0.grad.zero_() | |
Theta1.grad.zero_() | |
Theta2.grad.zero_() | |
# Update the iteration counter and previous cost | |
iter_count += 1 | |
prev_cost = cost | |
gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch() | |
# Print the final values of Theta0, Theta1, and Theta2 | |
print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item())) | |
print("Final Cost: Cost = {}".format(cost.item())) | |
print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual)) |