durrani commited on
Commit
61097c7
·
1 Parent(s): 2bfa756
Files changed (1) hide show
  1. app.py +72 -69
app.py CHANGED
@@ -1,6 +1,4 @@
1
- import numpy as np
2
  import torch
3
- import gradio as gr
4
 
5
  def predict_score(x1, x2):
6
  Theta0 = torch.tensor(-0.5738734424645411)
@@ -9,72 +7,77 @@ def predict_score(x1, x2):
9
  y_actual = Theta0 + Theta1 * x1 + Theta2 * 23 # Adjust the constant value here if needed
10
  return y_actual.item()
11
 
12
- input1 = gr.inputs.Number(label='Number of New Students')
13
- input2 = gr.inputs.Number(label='Number of Temperature')
14
-
15
- output = gr.outputs.Textbox(label='Predicted Rooms')
16
-
17
- gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch()
18
-
19
- def pred(y_actual,y_pred, x1, x2):
20
- # Input data
21
- x1 = torch.tensor([50, 60, 70, 80, 90])
22
- x2 = torch.tensor([20, 21, 22, 23, 24])
23
- y_actual = torch.tensor([30, 35, 40, 45, 50])
24
-
25
- # Learning rate and maximum number of iterations
26
- alpha = 0.01
27
- max_iters = 1000
28
-
29
- # Initial values for Theta0, Theta1, and Theta2
30
- Theta0 = torch.tensor(0.0, requires_grad=True)
31
- Theta1 = torch.tensor(0.0, requires_grad=True)
32
- Theta2 = torch.tensor(0.0, requires_grad=True)
33
-
34
- # Start the iteration counter
35
- iter_count = 0
36
-
37
- # Loop until convergence or maximum number of iterations
38
- while iter_count < max_iters:
39
- # Compute the predicted output
40
- y_pred = Theta0 + Theta1 * x1 + Theta2 * x2
41
-
42
- # Compute the errors
43
- errors = y_pred - y_actual
44
-
45
- # Compute the cost function
46
- cost = torch.sum(errors ** 2) / (2 * len(x1))
47
-
48
- # Print the cost function every 100 iterations
49
- if iter_count % 100 == 0:
50
- print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0.item(), Theta1.item(), Theta2.item()))
51
-
52
- # Check for convergence (if the cost is decreasing by less than 0.0001)
53
- if iter_count > 0 and torch.abs(cost - prev_cost) < 0.0001:
54
- print("Converged after {} iterations".format(iter_count))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  break
56
 
57
- # Perform automatic differentiation to compute gradients
58
- cost.backward()
59
-
60
- # Update Theta0, Theta1, and Theta2 using gradient descent
61
- with torch.no_grad():
62
- Theta0 -= alpha * Theta0.grad
63
- Theta1 -= alpha * Theta1.grad
64
- Theta2 -= alpha * Theta2.grad
65
-
66
- # Reset gradients for the next iteration
67
- Theta0.grad.zero_()
68
- Theta1.grad.zero_()
69
- Theta2.grad.zero_()
70
-
71
- # Update the iteration counter and previous cost
72
- iter_count += 1
73
- prev_cost = cost
74
-
75
- gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch()
76
-
77
- # Print the final values of Theta0, Theta1, and Theta2
78
- print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item()))
79
- print("Final Cost: Cost = {}".format(cost.item()))
80
- print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
 
 
1
  import torch
 
2
 
3
  def predict_score(x1, x2):
4
  Theta0 = torch.tensor(-0.5738734424645411)
 
7
  y_actual = Theta0 + Theta1 * x1 + Theta2 * 23 # Adjust the constant value here if needed
8
  return y_actual.item()
9
 
10
+ def gradient_descent():
11
+ # Input data
12
+ x1 = torch.tensor([50, 60, 70, 80, 90])
13
+ x2 = torch.tensor([20, 21, 22, 23, 24])
14
+ y_actual = torch.tensor([30, 35, 40, 45, 50])
15
+
16
+ # Learning rate and maximum number of iterations
17
+ alpha = 0.01
18
+ max_iters = 1000
19
+
20
+ # Initial values for Theta0, Theta1, and Theta2
21
+ Theta0 = torch.tensor(0.0, requires_grad=True)
22
+ Theta1 = torch.tensor(0.0, requires_grad=True)
23
+ Theta2 = torch.tensor(0.0, requires_grad=True)
24
+
25
+ # Start the iteration counter
26
+ iter_count = 0
27
+
28
+ # Loop until convergence or maximum number of iterations
29
+ while iter_count < max_iters:
30
+ # Compute the predicted output
31
+ y_pred = Theta0 + Theta1 * x1 + Theta2 * x2
32
+
33
+ # Compute the errors
34
+ errors = y_pred - y_actual
35
+
36
+ # Compute the cost function
37
+ cost = torch.sum(errors ** 2) / (2 * len(x1))
38
+
39
+ # Print the cost function every 100 iterations
40
+ if iter_count % 100 == 0:
41
+ print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0.item(), Theta1.item(), Theta2.item()))
42
+
43
+ # Check for convergence (if the cost is decreasing by less than 0.0001)
44
+ if iter_count > 0 and torch.abs(cost - prev_cost) < 0.0001:
45
+ print("Converged after {} iterations".format(iter_count))
46
+ break
47
+
48
+ # Perform automatic differentiation to compute gradients
49
+ cost.backward()
50
+
51
+ # Update Theta0, Theta1, and Theta2 using gradient descent
52
+ with torch.no_grad():
53
+ Theta0 -= alpha * Theta0.grad
54
+ Theta1 -= alpha * Theta1.grad
55
+ Theta2 -= alpha * Theta2.grad
56
+
57
+ # Reset gradients for the next iteration
58
+ Theta0.grad.zero_()
59
+ Theta1.grad.zero_()
60
+ Theta2.grad.zero_()
61
+
62
+ # Update the iteration counter and previous cost
63
+ iter_count += 1
64
+ prev_cost = cost
65
+
66
+ # Print the final values of Theta0, Theta1, and Theta2
67
+ print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item()))
68
+ print("Final Cost: Cost = {}".format(cost.item()))
69
+ print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
70
+
71
+ # Launch the prediction interface
72
+ while True:
73
+ x1 = float(input("Enter the number of new students: "))
74
+ x2 = float(input("Enter the number of temperature: "))
75
+ predicted_rooms = predict_score(x1, x2)
76
+ print("Predicted rooms:", predicted_rooms)
77
+ print()
78
+
79
+ choice = input("Do you want to predict again? (y/n): ")
80
+ if choice.lower() != 'y':
81
  break
82
 
83
+ gradient_descent()