import numpy as np import torch import gradio as gr def predict_score(x1, x2): Theta0 = torch.tensor(-0.5738734424645411) Theta1 = torch.tensor(2.1659122905141825) Theta2 = torch.tensor(0.0) y_actual = Theta0 + Theta1 * x1 + Theta2 * 23 # Adjust the constant value here if needed return y_actual.item() input1 = gr.inputs.Number(label='Number of New Students') input2 = gr.inputs.Number(label='Number of Temperature') output = gr.outputs.Textbox(label='Predicted Rooms') gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch() def pred(y_actual,y_pred, x1, x2): # Input data x1 = torch.tensor([50, 60, 70, 80, 90]) x2 = torch.tensor([20, 21, 22, 23, 24]) y_actual = torch.tensor([30, 35, 40, 45, 50]) # Learning rate and maximum number of iterations alpha = 0.01 max_iters = 1000 # Initial values for Theta0, Theta1, and Theta2 Theta0 = torch.tensor(0.0, requires_grad=True) Theta1 = torch.tensor(0.0, requires_grad=True) Theta2 = torch.tensor(0.0, requires_grad=True) # Start the iteration counter iter_count = 0 # Loop until convergence or maximum number of iterations while iter_count < max_iters: # Compute the predicted output y_pred = Theta0 + Theta1 * x1 + Theta2 * x2 # Compute the errors errors = y_pred - y_actual # Compute the cost function cost = torch.sum(errors ** 2) / (2 * len(x1)) # Print the cost function every 100 iterations if iter_count % 100 == 0: print("Iteration {}: Cost = {}, Theta0 = {}, Theta1 = {}, Theta2 = {}".format(iter_count, cost, Theta0.item(), Theta1.item(), Theta2.item())) # Check for convergence (if the cost is decreasing by less than 0.0001) if iter_count > 0 and torch.abs(cost - prev_cost) < 0.0001: print("Converged after {} iterations".format(iter_count)) break # Perform automatic differentiation to compute gradients cost.backward() # Update Theta0, Theta1, and Theta2 using gradient descent with torch.no_grad(): Theta0 -= alpha * Theta0.grad Theta1 -= alpha * Theta1.grad Theta2 -= alpha * Theta2.grad # Reset gradients for the next iteration Theta0.grad.zero_() Theta1.grad.zero_() Theta2.grad.zero_() # Update the iteration counter and previous cost iter_count += 1 prev_cost = cost gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch() # Print the final values of Theta0, Theta1, and Theta2 print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item())) print("Final Cost: Cost = {}".format(cost.item())) print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))