LLM / qa_dataset.py
dushuai112233's picture
Upload 5 files
47f89ab verified
raw
history blame
2.64 kB
from torch.utils.data import Dataset
import torch
import json
import numpy as np
class QADataset(Dataset):
def __init__(self, data_path, tokenizer, max_source_length, max_target_length) -> None:
super().__init__()
self.tokenizer = tokenizer
self.max_source_length = max_source_length
self.max_target_length = max_target_length
self.max_seq_length = self.max_source_length + self.max_target_length
self.data = []
if data_path:
with open(data_path, "r", encoding='utf-8') as f:
for line in f:
if not line or line == "":
continue
json_line = json.loads(line)
question = json_line["question"]
answer = json_line["answer"]
self.data.append({
"question": question,
"answer": answer
})
print("data load , size:", len(self.data))
def preprocess(self, question, answer):
messages = [
{"role": "system", "content": "你是一个医疗方面的专家,可以根据患者的问题进行解答。"},
{"role": "user", "content": question}
]
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
instruction = self.tokenizer(prompt, add_special_tokens=False, max_length=self.max_source_length)
response = self.tokenizer(answer, add_special_tokens=False, max_length=self.max_target_length)
input_ids = instruction["input_ids"] + response["input_ids"] + [self.tokenizer.pad_token_id]
attention_mask = (instruction["attention_mask"] + response["attention_mask"] + [1])
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [self.tokenizer.pad_token_id]
if len(input_ids) > self.max_seq_length:
input_ids = input_ids[:self.max_seq_length]
attention_mask = attention_mask[:self.max_seq_length]
labels = labels[:self.max_seq_length]
return input_ids, attention_mask, labels
def __getitem__(self, index):
item_data = self.data[index]
input_ids, attention_mask, labels = self.preprocess(**item_data)
return {
"input_ids": torch.LongTensor(np.array(input_ids)),
"attention_mask": torch.LongTensor(np.array(attention_mask)),
"labels": torch.LongTensor(np.array(labels))
}
def __len__(self):
return len(self.data)