Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,212 +1,212 @@
|
|
1 |
-
# import torch
|
2 |
-
# from torch.utils.data import DataLoader
|
3 |
-
# from torch.utils.tensorboard import SummaryWriter
|
4 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
# from peft import LoraConfig, get_peft_model, TaskType
|
6 |
-
# import pandas as pd
|
7 |
-
# from qa_dataset import QADataset
|
8 |
-
# from tqdm import tqdm
|
9 |
-
# import os, time, sys
|
10 |
-
#
|
11 |
-
#
|
12 |
-
# def train_model(model, train_loader, val_loader, optimizer, gradient_accumulation_steps,
|
13 |
-
# device, num_epochs, model_output_dir, writer):
|
14 |
-
# batch_step = 0
|
15 |
-
# for epoch in range(num_epochs):
|
16 |
-
# time1 = time.time()
|
17 |
-
# model.train()
|
18 |
-
# for index, data in enumerate(tqdm(train_loader, file=sys.stdout, desc="Train Epoch: " + str(epoch))):
|
19 |
-
# input_ids = data['input_ids'].to(device, dtype=torch.long)
|
20 |
-
# attention_mask = data['attention_mask'].to(device, dtype=torch.long)
|
21 |
-
# labels = data['labels'].to(device, dtype=torch.long)
|
22 |
-
# # 前向传播
|
23 |
-
# outputs = model(
|
24 |
-
# input_ids=input_ids,
|
25 |
-
# attention_mask=attention_mask,
|
26 |
-
# labels=labels,
|
27 |
-
# )
|
28 |
-
# loss = outputs.loss
|
29 |
-
# # 反向传播,计算当前梯度
|
30 |
-
# loss.backward()
|
31 |
-
# # 梯度累积步数
|
32 |
-
# if (index % gradient_accumulation_steps == 0 and index != 0) or index == len(train_loader) - 1:
|
33 |
-
# # 更新网络参数
|
34 |
-
# optimizer.step()
|
35 |
-
# # 清空过往梯度
|
36 |
-
# optimizer.zero_grad()
|
37 |
-
# writer.add_scalar('Loss/train', loss, batch_step)
|
38 |
-
# batch_step += 1
|
39 |
-
# # 100轮打印一次 loss
|
40 |
-
# if index % 100 == 0 or index == len(train_loader) - 1:
|
41 |
-
# time2 = time.time()
|
42 |
-
# tqdm.write(
|
43 |
-
# f"{index}, epoch: {epoch} -loss: {str(loss)} ; each step's time spent: {(str(float(time2 - time1) / float(index + 0.0001)))}")
|
44 |
-
# # 验证
|
45 |
-
# model.eval()
|
46 |
-
# val_loss = validate_model(model, val_loader, device)
|
47 |
-
# writer.add_scalar('Loss/val', val_loss, epoch)
|
48 |
-
# print(f"val loss: {val_loss} , epoch: {epoch}")
|
49 |
-
# print("Save Model To ", model_output_dir)
|
50 |
-
# model.save_pretrained(model_output_dir)
|
51 |
-
#
|
52 |
-
#
|
53 |
-
# def validate_model(model, device, val_loader):
|
54 |
-
# running_loss = 0.0
|
55 |
-
# with torch.no_grad():
|
56 |
-
# for _, data in enumerate(tqdm(val_loader, file=sys.stdout, desc="Validation Data")):
|
57 |
-
# input_ids = data['input_ids'].to(device, dtype=torch.long)
|
58 |
-
# attention_mask = data['attention_mask'].to(device, dtype=torch.long)
|
59 |
-
# labels = data['labels'].to(device, dtype=torch.long)
|
60 |
-
# outputs = model(
|
61 |
-
# input_ids=input_ids,
|
62 |
-
# attention_mask=attention_mask,
|
63 |
-
# labels=labels,
|
64 |
-
# )
|
65 |
-
# loss = outputs.loss
|
66 |
-
# running_loss += loss.item()
|
67 |
-
# return running_loss / len(val_loader)
|
68 |
-
#
|
69 |
-
#
|
70 |
-
# def main():
|
71 |
-
# # 基础模型位置
|
72 |
-
# model_name = "model/Qwen2-1.5B-Instruct"
|
73 |
-
# # 训练集
|
74 |
-
# train_json_path = "./data/train.json"
|
75 |
-
# # 验证集
|
76 |
-
# val_json_path = "./data/val.json"
|
77 |
-
# max_source_length = 128
|
78 |
-
# max_target_length = 256
|
79 |
-
# epochs = 10
|
80 |
-
# batch_size = 1
|
81 |
-
# lr = 1e-4
|
82 |
-
# gradient_accumulation_steps = 16
|
83 |
-
# lora_rank = 8
|
84 |
-
# lora_alpha = 32
|
85 |
-
# model_output_dir = "output"
|
86 |
-
# logs_dir = "logs"
|
87 |
-
# # 设备
|
88 |
-
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
89 |
-
# # 加载分词器和模型
|
90 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
91 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
92 |
-
# # setup peft
|
93 |
-
# peft_config = LoraConfig(
|
94 |
-
# task_type=TaskType.CAUSAL_LM,
|
95 |
-
# target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
96 |
-
# inference_mode=False,
|
97 |
-
# r=lora_rank,
|
98 |
-
# lora_alpha=lora_alpha,
|
99 |
-
# lora_dropout=0.1
|
100 |
-
# )
|
101 |
-
# model = get_peft_model(model, peft_config)
|
102 |
-
# model.is_parallelizable = True
|
103 |
-
# model.model_parallel = True
|
104 |
-
# model.print_trainable_parameters()
|
105 |
-
# print("Start Load Train Data...")
|
106 |
-
# train_params = {
|
107 |
-
# "batch_size": batch_size,
|
108 |
-
# "shuffle": True,
|
109 |
-
# "num_workers": 0,
|
110 |
-
# }
|
111 |
-
# training_set = QADataset(train_json_path, tokenizer, max_source_length, max_target_length)
|
112 |
-
# training_loader = DataLoader(training_set, **train_params)
|
113 |
-
# print("Start Load Validation Data...")
|
114 |
-
# val_params = {
|
115 |
-
# "batch_size": batch_size,
|
116 |
-
# "shuffle": False,
|
117 |
-
# "num_workers": 0,
|
118 |
-
# }
|
119 |
-
# val_set = QADataset(val_json_path, tokenizer, max_source_length, max_target_length)
|
120 |
-
# val_loader = DataLoader(val_set, **val_params)
|
121 |
-
# # 日志记录
|
122 |
-
# writer = SummaryWriter(logs_dir)
|
123 |
-
# # 优化器
|
124 |
-
# optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
|
125 |
-
# model = model.to(device)
|
126 |
-
# # 开始训练
|
127 |
-
# print("Start Training...")
|
128 |
-
# train_model(
|
129 |
-
# model=model,
|
130 |
-
# train_loader=training_loader,
|
131 |
-
# val_loader=val_loader,
|
132 |
-
# optimizer=optimizer,
|
133 |
-
# gradient_accumulation_steps=gradient_accumulation_steps,
|
134 |
-
# device=device,
|
135 |
-
# num_epochs=epochs,
|
136 |
-
# model_output_dir=model_output_dir,
|
137 |
-
# writer=writer
|
138 |
-
# )
|
139 |
-
# writer.close()
|
140 |
-
#
|
141 |
-
#
|
142 |
-
# if __name__ == '__main__':
|
143 |
-
# main()
|
144 |
-
#
|
145 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
146 |
-
from peft import LoraConfig, get_peft_model, TaskType
|
147 |
-
from datasets import load_dataset
|
148 |
-
from torch.utils.tensorboard import SummaryWriter
|
149 |
-
import os
|
150 |
-
import torch
|
151 |
-
def main():
|
152 |
-
# 基础模型位置
|
153 |
-
model_name = "
|
154 |
-
# 设备
|
155 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
156 |
-
|
157 |
-
# 加载分词器和模型
|
158 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
159 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
160 |
-
|
161 |
-
# Setup PEFT (Low-Rank Adaption)
|
162 |
-
peft_config = LoraConfig(
|
163 |
-
task_type=TaskType.CAUSAL_LM,
|
164 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
165 |
-
inference_mode=False,
|
166 |
-
r=8, # 低秩矩阵的秩
|
167 |
-
lora_alpha=32, # LoRA的alpha超参数
|
168 |
-
lora_dropout=0.1
|
169 |
-
)
|
170 |
-
model = get_peft_model(model, peft_config)
|
171 |
-
|
172 |
-
# Load Dataset
|
173 |
-
train_dataset = load_dataset('json', data_files='./data/train.json', split='train')
|
174 |
-
val_dataset = load_dataset('json', data_files='./data/val.json', split='validation')
|
175 |
-
|
176 |
-
# Tokenize the datasets
|
177 |
-
def tokenize_function(examples):
|
178 |
-
return tokenizer(examples['input_text'], padding='max_length', truncation=True, max_length=128)
|
179 |
-
|
180 |
-
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
181 |
-
val_dataset = val_dataset.map(tokenize_function, batched=True)
|
182 |
-
|
183 |
-
# Define Training Arguments
|
184 |
-
training_args = TrainingArguments(
|
185 |
-
output_dir="./output", # 保存模型和日志的路径
|
186 |
-
evaluation_strategy="epoch", # 每个epoch后进行验证
|
187 |
-
per_device_train_batch_size=1, # 每个设备的batch size
|
188 |
-
per_device_eval_batch_size=1, # 验证时的batch size
|
189 |
-
logging_dir="./logs", # 日志目录
|
190 |
-
logging_steps=10, # 每10步记录一次日志
|
191 |
-
save_steps=100, # 每100步保存一次模型
|
192 |
-
num_train_epochs=10, # 训练的epoch数
|
193 |
-
save_total_limit=2, # 最大保存模型数
|
194 |
-
)
|
195 |
-
|
196 |
-
# Define the Trainer
|
197 |
-
trainer = Trainer(
|
198 |
-
model=model, # 训练的模型
|
199 |
-
args=training_args, # 训练的参数
|
200 |
-
train_dataset=train_dataset, # 训练数据集
|
201 |
-
eval_dataset=val_dataset, # 验证数据集
|
202 |
-
tokenizer=tokenizer, # 用于预处理的分词器
|
203 |
-
)
|
204 |
-
|
205 |
-
# Start Training
|
206 |
-
trainer.train()
|
207 |
-
|
208 |
-
# Save the model
|
209 |
-
model.save_pretrained('./output')
|
210 |
-
|
211 |
-
if __name__ == '__main__':
|
212 |
-
main()
|
|
|
1 |
+
# import torch
|
2 |
+
# from torch.utils.data import DataLoader
|
3 |
+
# from torch.utils.tensorboard import SummaryWriter
|
4 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
# from peft import LoraConfig, get_peft_model, TaskType
|
6 |
+
# import pandas as pd
|
7 |
+
# from qa_dataset import QADataset
|
8 |
+
# from tqdm import tqdm
|
9 |
+
# import os, time, sys
|
10 |
+
#
|
11 |
+
#
|
12 |
+
# def train_model(model, train_loader, val_loader, optimizer, gradient_accumulation_steps,
|
13 |
+
# device, num_epochs, model_output_dir, writer):
|
14 |
+
# batch_step = 0
|
15 |
+
# for epoch in range(num_epochs):
|
16 |
+
# time1 = time.time()
|
17 |
+
# model.train()
|
18 |
+
# for index, data in enumerate(tqdm(train_loader, file=sys.stdout, desc="Train Epoch: " + str(epoch))):
|
19 |
+
# input_ids = data['input_ids'].to(device, dtype=torch.long)
|
20 |
+
# attention_mask = data['attention_mask'].to(device, dtype=torch.long)
|
21 |
+
# labels = data['labels'].to(device, dtype=torch.long)
|
22 |
+
# # 前向传播
|
23 |
+
# outputs = model(
|
24 |
+
# input_ids=input_ids,
|
25 |
+
# attention_mask=attention_mask,
|
26 |
+
# labels=labels,
|
27 |
+
# )
|
28 |
+
# loss = outputs.loss
|
29 |
+
# # 反向传播,计算当前梯度
|
30 |
+
# loss.backward()
|
31 |
+
# # 梯度累积步数
|
32 |
+
# if (index % gradient_accumulation_steps == 0 and index != 0) or index == len(train_loader) - 1:
|
33 |
+
# # 更新网络参数
|
34 |
+
# optimizer.step()
|
35 |
+
# # 清空过往梯度
|
36 |
+
# optimizer.zero_grad()
|
37 |
+
# writer.add_scalar('Loss/train', loss, batch_step)
|
38 |
+
# batch_step += 1
|
39 |
+
# # 100轮打印一次 loss
|
40 |
+
# if index % 100 == 0 or index == len(train_loader) - 1:
|
41 |
+
# time2 = time.time()
|
42 |
+
# tqdm.write(
|
43 |
+
# f"{index}, epoch: {epoch} -loss: {str(loss)} ; each step's time spent: {(str(float(time2 - time1) / float(index + 0.0001)))}")
|
44 |
+
# # 验证
|
45 |
+
# model.eval()
|
46 |
+
# val_loss = validate_model(model, val_loader, device)
|
47 |
+
# writer.add_scalar('Loss/val', val_loss, epoch)
|
48 |
+
# print(f"val loss: {val_loss} , epoch: {epoch}")
|
49 |
+
# print("Save Model To ", model_output_dir)
|
50 |
+
# model.save_pretrained(model_output_dir)
|
51 |
+
#
|
52 |
+
#
|
53 |
+
# def validate_model(model, device, val_loader):
|
54 |
+
# running_loss = 0.0
|
55 |
+
# with torch.no_grad():
|
56 |
+
# for _, data in enumerate(tqdm(val_loader, file=sys.stdout, desc="Validation Data")):
|
57 |
+
# input_ids = data['input_ids'].to(device, dtype=torch.long)
|
58 |
+
# attention_mask = data['attention_mask'].to(device, dtype=torch.long)
|
59 |
+
# labels = data['labels'].to(device, dtype=torch.long)
|
60 |
+
# outputs = model(
|
61 |
+
# input_ids=input_ids,
|
62 |
+
# attention_mask=attention_mask,
|
63 |
+
# labels=labels,
|
64 |
+
# )
|
65 |
+
# loss = outputs.loss
|
66 |
+
# running_loss += loss.item()
|
67 |
+
# return running_loss / len(val_loader)
|
68 |
+
#
|
69 |
+
#
|
70 |
+
# def main():
|
71 |
+
# # 基础模型位置
|
72 |
+
# model_name = "model/Qwen2-1.5B-Instruct"
|
73 |
+
# # 训练集
|
74 |
+
# train_json_path = "./data/train.json"
|
75 |
+
# # 验证集
|
76 |
+
# val_json_path = "./data/val.json"
|
77 |
+
# max_source_length = 128
|
78 |
+
# max_target_length = 256
|
79 |
+
# epochs = 10
|
80 |
+
# batch_size = 1
|
81 |
+
# lr = 1e-4
|
82 |
+
# gradient_accumulation_steps = 16
|
83 |
+
# lora_rank = 8
|
84 |
+
# lora_alpha = 32
|
85 |
+
# model_output_dir = "output"
|
86 |
+
# logs_dir = "logs"
|
87 |
+
# # 设备
|
88 |
+
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
89 |
+
# # 加载分词器和模型
|
90 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
91 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
92 |
+
# # setup peft
|
93 |
+
# peft_config = LoraConfig(
|
94 |
+
# task_type=TaskType.CAUSAL_LM,
|
95 |
+
# target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
96 |
+
# inference_mode=False,
|
97 |
+
# r=lora_rank,
|
98 |
+
# lora_alpha=lora_alpha,
|
99 |
+
# lora_dropout=0.1
|
100 |
+
# )
|
101 |
+
# model = get_peft_model(model, peft_config)
|
102 |
+
# model.is_parallelizable = True
|
103 |
+
# model.model_parallel = True
|
104 |
+
# model.print_trainable_parameters()
|
105 |
+
# print("Start Load Train Data...")
|
106 |
+
# train_params = {
|
107 |
+
# "batch_size": batch_size,
|
108 |
+
# "shuffle": True,
|
109 |
+
# "num_workers": 0,
|
110 |
+
# }
|
111 |
+
# training_set = QADataset(train_json_path, tokenizer, max_source_length, max_target_length)
|
112 |
+
# training_loader = DataLoader(training_set, **train_params)
|
113 |
+
# print("Start Load Validation Data...")
|
114 |
+
# val_params = {
|
115 |
+
# "batch_size": batch_size,
|
116 |
+
# "shuffle": False,
|
117 |
+
# "num_workers": 0,
|
118 |
+
# }
|
119 |
+
# val_set = QADataset(val_json_path, tokenizer, max_source_length, max_target_length)
|
120 |
+
# val_loader = DataLoader(val_set, **val_params)
|
121 |
+
# # 日志记录
|
122 |
+
# writer = SummaryWriter(logs_dir)
|
123 |
+
# # 优化器
|
124 |
+
# optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
|
125 |
+
# model = model.to(device)
|
126 |
+
# # 开始训练
|
127 |
+
# print("Start Training...")
|
128 |
+
# train_model(
|
129 |
+
# model=model,
|
130 |
+
# train_loader=training_loader,
|
131 |
+
# val_loader=val_loader,
|
132 |
+
# optimizer=optimizer,
|
133 |
+
# gradient_accumulation_steps=gradient_accumulation_steps,
|
134 |
+
# device=device,
|
135 |
+
# num_epochs=epochs,
|
136 |
+
# model_output_dir=model_output_dir,
|
137 |
+
# writer=writer
|
138 |
+
# )
|
139 |
+
# writer.close()
|
140 |
+
#
|
141 |
+
#
|
142 |
+
# if __name__ == '__main__':
|
143 |
+
# main()
|
144 |
+
#
|
145 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
146 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
147 |
+
from datasets import load_dataset
|
148 |
+
from torch.utils.tensorboard import SummaryWriter
|
149 |
+
import os
|
150 |
+
import torch
|
151 |
+
def main():
|
152 |
+
# 基础模型位置
|
153 |
+
model_name = "D:\\Qwen2-1.5B-Instruct"
|
154 |
+
# 设备
|
155 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
156 |
+
|
157 |
+
# 加载分词器和模型
|
158 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
159 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
160 |
+
|
161 |
+
# Setup PEFT (Low-Rank Adaption)
|
162 |
+
peft_config = LoraConfig(
|
163 |
+
task_type=TaskType.CAUSAL_LM,
|
164 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
165 |
+
inference_mode=False,
|
166 |
+
r=8, # 低秩矩阵的秩
|
167 |
+
lora_alpha=32, # LoRA的alpha超参数
|
168 |
+
lora_dropout=0.1
|
169 |
+
)
|
170 |
+
model = get_peft_model(model, peft_config)
|
171 |
+
|
172 |
+
# Load Dataset
|
173 |
+
train_dataset = load_dataset('json', data_files='./data/train.json', split='train')
|
174 |
+
val_dataset = load_dataset('json', data_files='./data/val.json', split='validation')
|
175 |
+
|
176 |
+
# Tokenize the datasets
|
177 |
+
def tokenize_function(examples):
|
178 |
+
return tokenizer(examples['input_text'], padding='max_length', truncation=True, max_length=128)
|
179 |
+
|
180 |
+
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
181 |
+
val_dataset = val_dataset.map(tokenize_function, batched=True)
|
182 |
+
|
183 |
+
# Define Training Arguments
|
184 |
+
training_args = TrainingArguments(
|
185 |
+
output_dir="./output", # 保存模型和日志的路径
|
186 |
+
evaluation_strategy="epoch", # 每个epoch后进行验证
|
187 |
+
per_device_train_batch_size=1, # 每个设备的batch size
|
188 |
+
per_device_eval_batch_size=1, # 验证时的batch size
|
189 |
+
logging_dir="./logs", # 日志目录
|
190 |
+
logging_steps=10, # 每10步记录一次日志
|
191 |
+
save_steps=100, # 每100步保存一次模型
|
192 |
+
num_train_epochs=10, # 训练的epoch数
|
193 |
+
save_total_limit=2, # 最大保存模型数
|
194 |
+
)
|
195 |
+
|
196 |
+
# Define the Trainer
|
197 |
+
trainer = Trainer(
|
198 |
+
model=model, # 训练的模型
|
199 |
+
args=training_args, # 训练的参数
|
200 |
+
train_dataset=train_dataset, # 训练数据集
|
201 |
+
eval_dataset=val_dataset, # 验证数据集
|
202 |
+
tokenizer=tokenizer, # 用于预处理的分词器
|
203 |
+
)
|
204 |
+
|
205 |
+
# Start Training
|
206 |
+
trainer.train()
|
207 |
+
|
208 |
+
# Save the model
|
209 |
+
model.save_pretrained('./output')
|
210 |
+
|
211 |
+
if __name__ == '__main__':
|
212 |
+
main()
|