Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
-
from accelerate import Accelerator
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
from peft import LoraConfig, get_peft_model, TaskType
|
4 |
from datasets import load_dataset
|
|
|
|
|
5 |
import torch
|
6 |
-
|
7 |
def main():
|
8 |
-
# 初始化 Accelerator
|
9 |
-
accelerator = Accelerator()
|
10 |
-
|
11 |
# 基础模型位置
|
12 |
model_name = "dushuai112233/Qwen2-1.5B-Instruct"
|
13 |
# 设备
|
14 |
-
device =
|
15 |
|
16 |
# 加载分词器和模型
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
@@ -39,7 +36,6 @@ def main():
|
|
39 |
def tokenize_function(examples):
|
40 |
return tokenizer(examples['question'], padding='max_length', truncation=True, max_length=128)
|
41 |
|
42 |
-
# 对训练集和验证集进行分词处理
|
43 |
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
44 |
val_dataset = val_dataset.map(tokenize_function, batched=True)
|
45 |
|
@@ -56,9 +52,6 @@ def main():
|
|
56 |
save_total_limit=2, # 最大保存模型数
|
57 |
)
|
58 |
|
59 |
-
# 将模型移到设备
|
60 |
-
model.to(device)
|
61 |
-
|
62 |
# Define the Trainer
|
63 |
trainer = Trainer(
|
64 |
model=model, # 训练的模型
|
@@ -75,4 +68,4 @@ def main():
|
|
75 |
model.save_pretrained('./output')
|
76 |
|
77 |
if __name__ == '__main__':
|
78 |
-
main()
|
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
2 |
from peft import LoraConfig, get_peft_model, TaskType
|
3 |
from datasets import load_dataset
|
4 |
+
from torch.utils.tensorboard import SummaryWriter
|
5 |
+
import os
|
6 |
import torch
|
|
|
7 |
def main():
|
|
|
|
|
|
|
8 |
# 基础模型位置
|
9 |
model_name = "dushuai112233/Qwen2-1.5B-Instruct"
|
10 |
# 设备
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
# 加载分词器和模型
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
36 |
def tokenize_function(examples):
|
37 |
return tokenizer(examples['question'], padding='max_length', truncation=True, max_length=128)
|
38 |
|
|
|
39 |
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
40 |
val_dataset = val_dataset.map(tokenize_function, batched=True)
|
41 |
|
|
|
52 |
save_total_limit=2, # 最大保存模型数
|
53 |
)
|
54 |
|
|
|
|
|
|
|
55 |
# Define the Trainer
|
56 |
trainer = Trainer(
|
57 |
model=model, # 训练的模型
|
|
|
68 |
model.save_pretrained('./output')
|
69 |
|
70 |
if __name__ == '__main__':
|
71 |
+
main()
|