Add app.py
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title: Watset
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
@@ -10,4 +10,6 @@ pinned: false
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Structure Discovery with Watset
|
3 |
+
emoji: 🔮
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
**Watset** is a soft clustering algorithm for graphs as described in paper
|
14 |
+
[Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction](https://doi.org/10.1162/COLI_a_00354)
|
15 |
+
([arXiv](https://arxiv.org/abs/1808.06696)).
|
app.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Dmitry Ustalov
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
__author__ = 'Dmitry Ustalov'
|
16 |
+
__license__ = 'Apache 2.0'
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import re
|
20 |
+
import subprocess
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from tempfile import NamedTemporaryFile
|
23 |
+
from typing import Dict, IO, List, cast, Tuple, Optional
|
24 |
+
|
25 |
+
import gradio as gr
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import networkx as nx
|
28 |
+
import pandas as pd
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class Algorithm:
|
33 |
+
name: str
|
34 |
+
mode: Optional[str] = None
|
35 |
+
local_name: Optional[str] = None
|
36 |
+
local_params: Optional[str] = None
|
37 |
+
global_name: Optional[str] = None
|
38 |
+
global_params: Optional[str] = None
|
39 |
+
|
40 |
+
def args_clustering(self) -> List[str]:
|
41 |
+
args = [self.name]
|
42 |
+
|
43 |
+
if self.mode:
|
44 |
+
args.extend(['--mode', self.mode])
|
45 |
+
|
46 |
+
args.extend(self.args_graph())
|
47 |
+
|
48 |
+
if self.global_name:
|
49 |
+
args.extend(['--global', self.global_name])
|
50 |
+
|
51 |
+
if self.global_params:
|
52 |
+
args.extend(['--global-params', self.global_params])
|
53 |
+
|
54 |
+
return args
|
55 |
+
|
56 |
+
def args_graph(self) -> List[str]:
|
57 |
+
args = []
|
58 |
+
|
59 |
+
if self.local_name:
|
60 |
+
args.extend(['--local', self.local_name])
|
61 |
+
|
62 |
+
if self.local_params:
|
63 |
+
args.extend(['--local-params', self.local_params])
|
64 |
+
|
65 |
+
return args
|
66 |
+
|
67 |
+
|
68 |
+
ALGORITHMS: Dict[str, Algorithm] = {
|
69 |
+
'Watset[CW_top, CW_top]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=top'),
|
70 |
+
'Watset[CW_lin, CW_top]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=top'),
|
71 |
+
'Watset[CW_log, CW_top]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=top'),
|
72 |
+
'Watset[MCL, CW_top]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=top'),
|
73 |
+
'Watset[CW_top, CW_lin]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=lin'),
|
74 |
+
'Watset[CW_lin, CW_lin]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=lin'),
|
75 |
+
'Watset[CW_log, CW_lin]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=lin'),
|
76 |
+
'Watset[MCL, CW_lin]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=lin'),
|
77 |
+
'Watset[CW_top, CW_log]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=log'),
|
78 |
+
'Watset[CW_lin, CW_log]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=log'),
|
79 |
+
'Watset[CW_log, CW_log]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=log'),
|
80 |
+
'Watset[MCL, CW_log]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=log'),
|
81 |
+
'CW_top': Algorithm('cw', 'top'),
|
82 |
+
'CW_lin': Algorithm('cw', 'lin'),
|
83 |
+
'CW_log': Algorithm('cw', 'log'),
|
84 |
+
'MaxMax': Algorithm('maxmax')
|
85 |
+
}
|
86 |
+
|
87 |
+
SENSE = re.compile(r'^(?P<item>\d+)#(?P<sense>\d+)$')
|
88 |
+
|
89 |
+
|
90 |
+
def visualize(G: nx.Graph, seed: int = 0) -> plt.Figure:
|
91 |
+
pos = nx.spring_layout(G, seed=seed)
|
92 |
+
|
93 |
+
fig = plt.figure(dpi=240)
|
94 |
+
plt.axis('off')
|
95 |
+
nx.draw_networkx_edges(G, pos, alpha=.15)
|
96 |
+
nx.draw_networkx_labels(G, pos)
|
97 |
+
|
98 |
+
return fig
|
99 |
+
|
100 |
+
|
101 |
+
def watset(G: nx.Graph, algorithm: str, seed: int = 0,
|
102 |
+
jar: str = 'watset.jar', timeout: int = 10) -> Tuple[pd.DataFrame, Optional[nx.Graph]]:
|
103 |
+
with (NamedTemporaryFile() as graph,
|
104 |
+
NamedTemporaryFile(mode='rb') as clusters,
|
105 |
+
NamedTemporaryFile(mode='rb') as senses):
|
106 |
+
nx.write_edgelist(G, graph.name, delimiter='\t', data=['weight'])
|
107 |
+
|
108 |
+
try:
|
109 |
+
result = subprocess.run(['java', '-jar', jar,
|
110 |
+
'--input', graph.name, '--output', clusters.name, '--seed', str(seed),
|
111 |
+
*ALGORITHMS[algorithm].args_clustering()],
|
112 |
+
capture_output=True, text=True, timeout=timeout)
|
113 |
+
|
114 |
+
if result.returncode != 0:
|
115 |
+
raise gr.Error(f'Backend error (code {result.returncode}): {result.stderr}')
|
116 |
+
except subprocess.SubprocessError as e:
|
117 |
+
raise gr.Error(f'Backend error: {e}')
|
118 |
+
|
119 |
+
df_clusters = pd.read_csv(clusters, sep='\t', names=('cluster', 'size', 'items'),
|
120 |
+
dtype={'cluster': int, 'size': int, 'items': str})
|
121 |
+
|
122 |
+
df_clusters['items'] = df_clusters['items'].str.split(', ')
|
123 |
+
|
124 |
+
if ALGORITHMS[algorithm].name == 'watset':
|
125 |
+
try:
|
126 |
+
result = subprocess.run(['java', '-jar', jar,
|
127 |
+
'--input', graph.name, '--output', senses.name, '--seed', str(seed),
|
128 |
+
'graph', *ALGORITHMS[algorithm].args_graph()],
|
129 |
+
capture_output=True, text=True, timeout=timeout)
|
130 |
+
|
131 |
+
if result.returncode != 0:
|
132 |
+
raise gr.Error(f'Backend error (code {result.returncode}): {result.stderr}')
|
133 |
+
except subprocess.SubprocessError as e:
|
134 |
+
raise gr.Error(f'Backend error: {e}')
|
135 |
+
|
136 |
+
G_senses = nx.read_edgelist(senses.name, delimiter='\t', comments='\n', data=[('weight', float)])
|
137 |
+
|
138 |
+
return df_clusters, G_senses
|
139 |
+
|
140 |
+
return df_clusters, None
|
141 |
+
|
142 |
+
|
143 |
+
def handler(file: IO[bytes], algorithm: str, seed: int) -> Tuple[pd.DataFrame, plt.Figure]:
|
144 |
+
if file is None:
|
145 |
+
raise gr.Error('File must be uploaded')
|
146 |
+
|
147 |
+
if algorithm not in ALGORITHMS:
|
148 |
+
raise gr.Error(f'Unknown algorithm: {algorithm}')
|
149 |
+
|
150 |
+
with open(file.name) as f:
|
151 |
+
try:
|
152 |
+
dialect = csv.Sniffer().sniff(f.readline(4096))
|
153 |
+
delimiter = dialect.delimiter
|
154 |
+
except csv.Error:
|
155 |
+
delimiter = ','
|
156 |
+
|
157 |
+
G: nx.Graph = nx.read_edgelist(file.name, delimiter=delimiter, comments='\n', data=[('weight', float)])
|
158 |
+
|
159 |
+
mapping, reverse = {}, {}
|
160 |
+
|
161 |
+
for i, node in enumerate(G):
|
162 |
+
mapping[node] = i
|
163 |
+
reverse[i] = node
|
164 |
+
|
165 |
+
nx.relabel_nodes(G, mapping, copy=False)
|
166 |
+
|
167 |
+
df_clusters, G_senses = watset(G, algorithm=algorithm, seed=seed)
|
168 |
+
|
169 |
+
nx.relabel_nodes(G, reverse, copy=False)
|
170 |
+
|
171 |
+
df_clusters['items'] = df_clusters['items'].apply(lambda items: sorted(reverse[int(item)] for item in items))
|
172 |
+
|
173 |
+
if G_senses is None:
|
174 |
+
fig = visualize(G, seed=seed)
|
175 |
+
else:
|
176 |
+
sense_mapping = {node: f'{reverse[int(match["item"])]}#{match["sense"]}' # type: ignore
|
177 |
+
for node in G_senses for match in (SENSE.match(node),)}
|
178 |
+
|
179 |
+
nx.relabel_nodes(G_senses, sense_mapping, copy=False)
|
180 |
+
|
181 |
+
fig = visualize(G_senses, seed=seed)
|
182 |
+
|
183 |
+
return df_clusters, fig
|
184 |
+
|
185 |
+
|
186 |
+
def main() -> None:
|
187 |
+
iface = gr.Interface(
|
188 |
+
fn=handler,
|
189 |
+
inputs=[
|
190 |
+
gr.File(
|
191 |
+
value='java.tsv',
|
192 |
+
file_types=['.tsv', '.csv'],
|
193 |
+
label='Graph'
|
194 |
+
),
|
195 |
+
gr.Dropdown(
|
196 |
+
choices=cast(List[str], ALGORITHMS),
|
197 |
+
value='Watset[MCL, CW_lin]',
|
198 |
+
label='Algorithm'
|
199 |
+
),
|
200 |
+
gr.Number(
|
201 |
+
label='Seed',
|
202 |
+
precision=0
|
203 |
+
)
|
204 |
+
],
|
205 |
+
outputs=[
|
206 |
+
gr.Dataframe(
|
207 |
+
headers=['cluster', 'size', 'items'],
|
208 |
+
label='Clustering'
|
209 |
+
),
|
210 |
+
gr.Plot(
|
211 |
+
label='Graph'
|
212 |
+
)
|
213 |
+
],
|
214 |
+
title='Structure Discovery with Watset',
|
215 |
+
description='''
|
216 |
+
**Watset** is a powerful algorithm for structure discovery in graphs.
|
217 |
+
|
218 |
+
By capturing the ambiguity of nodes in a graph, Watset efficiently finds clusters in the input data.
|
219 |
+
|
220 |
+
Whether you're working with linguistic data or other networks, Watset is the go-to solution for unlocking hidden patterns and structures.
|
221 |
+
''',
|
222 |
+
article='''
|
223 |
+
**More Watset:**
|
224 |
+
|
225 |
+
- Paper: <https://doi.org/10.1162/COLI_a_00354> ([arXiv](https://arxiv.org/abs/1808.06696))
|
226 |
+
- Implementation: <https://github.com/nlpub/watset-java>
|
227 |
+
- Maven Central: <https://search.maven.org/artifact/org.nlpub/watset>
|
228 |
+
- conda-forge: <https://anaconda.org/conda-forge/watset>
|
229 |
+
''',
|
230 |
+
allow_flagging='never'
|
231 |
+
)
|
232 |
+
|
233 |
+
iface.launch()
|
234 |
+
|
235 |
+
|
236 |
+
if __name__ == '__main__':
|
237 |
+
main()
|