dvieri's picture
Update app.py
4462db7 verified
raw
history blame
2.23 kB
import cv2
import streamlit as st
import tempfile
import torch
from torchvision import transforms
from mtcnn import MTCNN
from skimage.feature import hog
import joblib
import numpy as np
def preprocess_image_siamese(img):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return transform(img)
def preprocess_image_svm(img):
img = cv2.resize(img, (224, 224))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
def extract_hog_features(img):
hog_features = hog(img, orientations=9, pixels_per_cell=(16, 16), cells_per_block=(4, 4))
return hog_features
def get_face(img):
detector = MTCNN()
faces = detector.detect_faces(img)
if faces:
x1, y1, w, h = faces[0]['box']
x1, y1 = abs(x1), abs(y1)
x2, y2 = x1 + w, y1 + h
return img[y1:y2, x1:x2]
return None
def verify(image, model, person):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_image:
temp_image.write(image.read())
temp_image_path = temp_image.name
image = cv2.imread(temp_image_path)
face = get_face(image)
if face is not None:
if model == "HOG-SVM":
with open(f'./svm_{lower(person)}.pkl', 'rb') as f:
svm = joblib.load(f)
with open(f'./pca_{lower(person)}.pkl', 'rb') as f:
pca = joblib.load(f)
face = preprocess_image_svm(face)
hog = extract_hog_features(face)
hog_pca = pca.transform([hog])
pred = svm.predict(hog_pca)
if pred == 1:
st.write("Match")
else:
st.write("Not Match")
else:
st.write("Face not detected")
def main():
st.title("Real-time Face Verification App")
model = st.selectbox("Select Model", ["Siamese", "HOG-SVM"])
person = st.selectbox("Select Person", ["Theo"])
enable = st.checkbox("Enable camera")
captured_image = st.camera_input("Take a picture", disabled=not enable)
if captured_image:
verify(captured_image, model, person)
if __name__ == "__main__":
main()