Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import streamlit as st
|
3 |
+
import tempfile
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from mtcnn import MTCNN
|
7 |
+
from skimage.feature import hog
|
8 |
+
import joblib
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Preprocessing for Siamese Model
|
12 |
+
def preprocess_image_siamese(img):
|
13 |
+
transform = transforms.Compose([
|
14 |
+
transforms.Resize((224, 224)),
|
15 |
+
transforms.ToTensor()
|
16 |
+
])
|
17 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
18 |
+
return transform(img)
|
19 |
+
|
20 |
+
# Preprocessing for SVM model (converting to grayscale)
|
21 |
+
def preprocess_image_svm(img):
|
22 |
+
img = cv2.resize(img, (224, 224))
|
23 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
24 |
+
return img
|
25 |
+
|
26 |
+
# Extract HOG Features
|
27 |
+
def extract_hog_features(img):
|
28 |
+
hog_features = hog(img, orientations=9, pixels_per_cell=(16, 16), cells_per_block=(4, 4))
|
29 |
+
return hog_features
|
30 |
+
|
31 |
+
# Detect faces using MTCNN
|
32 |
+
def get_face(img):
|
33 |
+
detector = MTCNN()
|
34 |
+
faces = detector.detect_faces(img)
|
35 |
+
if faces:
|
36 |
+
x1, y1, w, h = faces[0]['box']
|
37 |
+
x1, y1 = abs(x1), abs(y1)
|
38 |
+
x2, y2 = x1 + w, y1 + h
|
39 |
+
return img[y1:y2, x1:x2]
|
40 |
+
return None
|
41 |
+
|
42 |
+
# Function to verify face (either HOG-SVM or Siamese model)
|
43 |
+
def verify(img1, img2, model_type, anchor_img):
|
44 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_img1:
|
45 |
+
temp_img1.write(img1.read())
|
46 |
+
temp_img1_path = temp_img1.name
|
47 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_img2:
|
48 |
+
temp_img2.write(img2.read())
|
49 |
+
temp_img2_path = temp_img2.name
|
50 |
+
|
51 |
+
img1p = cv2.imread(temp_img1_path)
|
52 |
+
img2p = cv2.imread(temp_img2_path)
|
53 |
+
|
54 |
+
face1 = get_face(img1p)
|
55 |
+
face2 = get_face(img2p)
|
56 |
+
|
57 |
+
if face1 is not None and face2 is not None:
|
58 |
+
st.image([face1, face2], caption=["Image 1", "Image 2"], width=200)
|
59 |
+
|
60 |
+
if model_type == "HOG-SVM":
|
61 |
+
with open('./svm.pkl', 'rb') as f:
|
62 |
+
svm = joblib.load(f)
|
63 |
+
with open('./pca.pkl', 'rb') as f:
|
64 |
+
pca = joblib.load(f)
|
65 |
+
|
66 |
+
face1 = preprocess_image_svm(face1)
|
67 |
+
face2 = preprocess_image_svm(face2)
|
68 |
+
|
69 |
+
hog1 = extract_hog_features(face1)
|
70 |
+
hog2 = extract_hog_features(face2)
|
71 |
+
|
72 |
+
hog1_pca = pca.transform([hog1])
|
73 |
+
hog2_pca = pca.transform([hog2])
|
74 |
+
|
75 |
+
pred1 = svm.predict(hog1_pca)
|
76 |
+
pred2 = svm.predict(hog2_pca)
|
77 |
+
|
78 |
+
if pred1 == 1 and pred2 == 1:
|
79 |
+
st.write("Matched")
|
80 |
+
else:
|
81 |
+
st.write("Not Matched")
|
82 |
+
else:
|
83 |
+
st.write("Face not detected in one or both images")
|
84 |
+
|
85 |
+
# Main function to handle Streamlit interaction
|
86 |
+
def main():
|
87 |
+
st.title("Real-time Face Verification App")
|
88 |
+
|
89 |
+
model_type = st.selectbox("Select Model", ["Siamese", "HOG-SVM"])
|
90 |
+
anchor_img = st.file_uploader("Select Anchor Image", type=["jpg", "png"])
|
91 |
+
|
92 |
+
if model_type == "Siamese":
|
93 |
+
# Implement Siamese model choice logic here if needed
|
94 |
+
st.write("Using Siamese Network")
|
95 |
+
|
96 |
+
elif model_type == "HOG-SVM":
|
97 |
+
# Implement HOG-SVM logic here
|
98 |
+
st.write("Using HOG-SVM")
|
99 |
+
|
100 |
+
# Camera Input for Face Detection
|
101 |
+
run_detection = st.checkbox("Start Camera")
|
102 |
+
|
103 |
+
if run_detection:
|
104 |
+
cap = cv2.VideoCapture(0) # Start camera
|
105 |
+
|
106 |
+
while True:
|
107 |
+
ret, frame = cap.read()
|
108 |
+
if not ret:
|
109 |
+
st.write("Failed to grab frame.")
|
110 |
+
break
|
111 |
+
|
112 |
+
# Detect face in the current frame
|
113 |
+
face = get_face(frame)
|
114 |
+
if face is not None:
|
115 |
+
# Draw bounding box around detected face
|
116 |
+
x1, y1, x2, y2 = face[0], face[1], face[2], face[3] # Update face coordinates
|
117 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
118 |
+
|
119 |
+
# Show bounding box
|
120 |
+
st.image(frame, channels="BGR", use_column_width=True)
|
121 |
+
|
122 |
+
# Stop camera when ESC is pressed
|
123 |
+
key = cv2.waitKey(1) & 0xFF
|
124 |
+
if key == 27: # ESC key
|
125 |
+
break
|
126 |
+
|
127 |
+
cap.release()
|
128 |
+
cv2.destroyAllWindows()
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
main()
|