File size: 3,454 Bytes
a046c35
 
 
 
 
 
8aa0ccd
a046c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa0ccd
a046c35
8aa0ccd
a046c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import cv2
import streamlit as st
import tempfile
import torch
from torchvision import transforms
from mtcnn import MTCNN
from skimage.feature import hog
import pickle
import torch.nn as nn
from torchvision.models import resnet50

def preprocess_image_siamese(img):
    transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor()
    ])

    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return transform(img)

def preprocess_image_svm(img):
    img= cv2.resize(img, (224, 224))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    return img

def extract_hog_features(img):
    hog_features = hog(img, orientations=9, 
                      pixels_per_cell=(8, 8),
                      cells_per_block=(2, 2))
    return hog_features

def get_face(img):
    detector = MTCNN()
    faces = detector.detect_faces(img)

    x1,y1,w,h = faces[0]['box']
    x1, y1 = abs(x1), abs(y1)
    x2 = abs(x1+w)
    y2 = abs(y1+h)

    store_face = img[y1:y2,x1:x2]

    return store_face

def verify(img1, img2, model_type):
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_img1:
        temp_img1.write(img1.read())
        temp_img1_path = temp_img1.name
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_img2:
        temp_img2.write(img2.read())
        temp_img2_path = temp_img2.name

    img1p = cv2.imread(temp_img1_path)
    img2p = cv2.imread(temp_img2_path)

    face1 = get_face(img1p)
    face2 = get_face(img2p)

    if face1 and face2:

        st.image([face1, face2], caption=["Image 1", "Image 2"], width=200)

        # if model_type == "Siamese":
        #     face1 = preprocess_image_siamese(face1)
        #     face2 = preprocess_image_siamese(face2)
            

        #     # Get predictions
        #     with torch.no_grad():
        #         prediction = model(face1_tensor, face2_tensor)
                
        #         # Threshold decision
        #         if prediction.item() > 0.5:
        #             st.write("Matched")
        #         else:
        #             st.write("Not Matched")
        #         st.write(f"Confidence: {prediction.item():.4f}")

        if model_type == "HOG-SVM":
            with open('svm.pkl', 'rb') as f:
                svm = pickle.load(f)
            with open('pca.pkl', 'rb') as f:
                pca = pickle.load(f)
                
            face1 = preprocess_image_svm(face1)
            face2 = preprocess_image_svm(face2)

            hog1 = extract_hog_features(face1)
            hog2 = extract_hog_features(face2)
    
            hog1_pca = pca.transform([hog1])
            hog2_pca = pca.transform([hog2])
            
            pred1 = svm.predict(hog1_pca)
            pred2 = svm.predict(hog2_pca)

            if pred1 == 1 and pred2 == 1:
                st.write("Matched")
            else:
                st.write("Not Matched")
    else:
        st.write("Face not detected in one or both images")

def main():
    st.title("Face Verification App")
    
    model_type = st.selectbox("Select Model", ["Siamese", "HOG-SVM"])
    
    uploaded_img1 = st.file_uploader("Upload Image 1", type=["jpg", "png"])
    uploaded_img2 = st.file_uploader("Upload Image 2", type=["jpg", "png"])
    
    if uploaded_img1 and uploaded_img2:
        if st.button("Verify Faces"):
            verify(uploaded_img1, uploaded_img2, model_type)

if __name__ == "__main__":
    main()