dvj4 commited on
Commit
34e1b65
·
1 Parent(s): 57f3bb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -13
app.py CHANGED
@@ -5,19 +5,11 @@ import xgboost as xgb
5
  from sklearn.metrics import mean_squared_error
6
  from sklearn.model_selection import train_test_split
7
  import optuna
8
-
9
- # Load the data
10
  path = "train.csv"
11
  data = pd.read_csv(path)
12
-
13
- # Get features
14
  y = data['SalePrice']
15
  X = data[["LotArea","OverallQual", "OverallCond", "YearBuilt","TotRmsAbvGrd","GarageArea"]]
16
-
17
- # Split the data
18
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
19
-
20
- # Load the XGBoost model
21
  model = xgb.XGBRegressor(objective ='reg:squarederror',
22
  colsample_bytree = 1,
23
  eta=0.3,
@@ -26,7 +18,6 @@ model = xgb.XGBRegressor(objective ='reg:squarederror',
26
  alpha = 10,
27
  n_estimators = 700)
28
  model.fit(X_train, y_train)
29
- # Create a sidebar with sliders for each feature
30
  sidebar = st.sidebar
31
  sidebar.title("Input Features")
32
  lot_area = sidebar.slider("Lot Area", 1300, 215245, 1300)
@@ -35,7 +26,6 @@ overall_cond = sidebar.slider("Overall Condition", 1, 10, 6)
35
  year_built = sidebar.slider("Year Built", 1872, 2010, 1980)
36
  tot_rooms_above_grade = sidebar.slider("Total Rooms Above Grade", 2, 14, 5)
37
  garage_area = sidebar.slider("Garage Area", 0, 1418, 462)
38
- # Create a Pandas DataFrame with the user's input
39
  input_df = pd.DataFrame({
40
  "LotArea": [lot_area],
41
  "OverallQual": [overall_qual],
@@ -44,7 +34,5 @@ input_df = pd.DataFrame({
44
  "TotRmsAbvGrd": [tot_rooms_above_grade],
45
  "GarageArea": [garage_area]
46
  })
47
- # Use the XGBoost model to predict the house price range for the user's input
48
  prediction = model.predict(input_df)
49
- # Display the predicted house price range to the user
50
- st.write(f"The estimated house price range is ${prediction[0]:,.2f}")
 
5
  from sklearn.metrics import mean_squared_error
6
  from sklearn.model_selection import train_test_split
7
  import optuna
 
 
8
  path = "train.csv"
9
  data = pd.read_csv(path)
 
 
10
  y = data['SalePrice']
11
  X = data[["LotArea","OverallQual", "OverallCond", "YearBuilt","TotRmsAbvGrd","GarageArea"]]
 
 
12
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
 
 
13
  model = xgb.XGBRegressor(objective ='reg:squarederror',
14
  colsample_bytree = 1,
15
  eta=0.3,
 
18
  alpha = 10,
19
  n_estimators = 700)
20
  model.fit(X_train, y_train)
 
21
  sidebar = st.sidebar
22
  sidebar.title("Input Features")
23
  lot_area = sidebar.slider("Lot Area", 1300, 215245, 1300)
 
26
  year_built = sidebar.slider("Year Built", 1872, 2010, 1980)
27
  tot_rooms_above_grade = sidebar.slider("Total Rooms Above Grade", 2, 14, 5)
28
  garage_area = sidebar.slider("Garage Area", 0, 1418, 462)
 
29
  input_df = pd.DataFrame({
30
  "LotArea": [lot_area],
31
  "OverallQual": [overall_qual],
 
34
  "TotRmsAbvGrd": [tot_rooms_above_grade],
35
  "GarageArea": [garage_area]
36
  })
 
37
  prediction = model.predict(input_df)
38
+ st.write(f"The estimated house price range is ${prediction[0]:,.2f}")