Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,50 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import xgboost as xgb
|
5 |
+
from sklearn.metrics import mean_squared_error
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
import optuna
|
8 |
|
9 |
+
# Load the data
|
10 |
+
path = "train.csv"
|
11 |
+
data = pd.read_csv(path)
|
12 |
+
|
13 |
+
# Get features
|
14 |
+
y = data['SalePrice']
|
15 |
+
X = data[["LotArea","OverallQual", "OverallCond", "YearBuilt","TotRmsAbvGrd","GarageArea"]]
|
16 |
+
|
17 |
+
# Split the data
|
18 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
|
19 |
+
|
20 |
+
# Load the XGBoost model
|
21 |
+
model = xgb.XGBRegressor(objective ='reg:squarederror',
|
22 |
+
colsample_bytree = 1,
|
23 |
+
eta=0.3,
|
24 |
+
learning_rate = 0.01,
|
25 |
+
max_depth = 5,
|
26 |
+
alpha = 10,
|
27 |
+
n_estimators = 500)
|
28 |
+
model.fit(X_train, y_train)
|
29 |
+
# Create a sidebar with sliders for each feature
|
30 |
+
sidebar = st.sidebar
|
31 |
+
sidebar.title("Input Features")
|
32 |
+
lot_area = sidebar.slider("Lot Area", 1300, 215245, 50000)
|
33 |
+
overall_qual = sidebar.slider("Overall Quality", 1, 10, 5)
|
34 |
+
overall_cond = sidebar.slider("Overall Condition", 1, 10, 5)
|
35 |
+
year_built = sidebar.slider("Year Built", 1872, 2010, 1950)
|
36 |
+
tot_rooms_above_grade = sidebar.slider("Total Rooms Above Grade", 2, 14, 7)
|
37 |
+
garage_area = sidebar.slider("Garage Area", 0, 1418, 500)
|
38 |
+
# Create a Pandas DataFrame with the user's input
|
39 |
+
input_df = pd.DataFrame({
|
40 |
+
"LotArea": [lot_area],
|
41 |
+
"OverallQual": [overall_qual],
|
42 |
+
"OverallCond": [overall_cond],
|
43 |
+
"YearBuilt": [year_built],
|
44 |
+
"TotRmsAbvGrd": [tot_rooms_above_grade],
|
45 |
+
"GarageArea": [garage_area]
|
46 |
+
})
|
47 |
+
# Use the XGBoost model to predict the house price range for the user's input
|
48 |
+
prediction = model.predict(input_df)
|
49 |
+
# Display the predicted house price range to the user
|
50 |
+
st.write(f"The estimated house price range is ${prediction[0]:,.2f}")
|