File size: 10,750 Bytes
61d0d14
3d99c27
385e90f
61d0d14
 
 
 
 
 
385e90f
 
61d0d14
 
 
 
 
92cf4eb
 
 
 
 
 
 
 
 
 
50911e6
 
92cf4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d0d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d99c27
385e90f
 
 
61d0d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92cf4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385e90f
92cf4eb
3d99c27
61d0d14
385e90f
61d0d14
 
 
 
92cf4eb
 
61d0d14
 
 
 
 
92cf4eb
 
61d0d14
 
 
 
 
 
 
 
3d99c27
 
61d0d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92cf4eb
61d0d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351630d
61d0d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d99c27
 
 
61d0d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d99c27
 
 
61d0d14
 
 
 
 
 
 
 
 
 
 
92cf4eb
 
61d0d14
92cf4eb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import functools
import random
import logging

import gradio as gr
import torch

from fabric.generator import AttentionBasedGenerator

logger = logging.getLogger(__name__)


#model_name = "dreamlike-art/dreamlike-photoreal-2.0"
model_name = ""
model_ckpt = "https://huggingface.co/Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors"

class GeneratorWrapper:
  def __init__(self, model_name=None, model_ckpt=None):
    self.model_name = model_name if model_name else None
    self.model_ckpt = model_ckpt if model_ckpt else None
    self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    self.device = "cuda" if torch.cuda.is_available() else "cpu"

    self.reload()

  def generate(self, *args, **kwargs):
    if not hasattr(self, "generator"):
        self.reload()
    return self.generator.generate(*args, **kwargs)

  def to(self, device):
    return self.generator.to(device)

  def reload(self):
    if hasattr(self, "generator"):
      del self.generator
    if self.device == "cuda":
      torch.cuda.empty_cache()
    self.generator = AttentionBasedGenerator(
        model_name=self.model_name,
        model_ckpt=self.model_ckpt,
        torch_dtype=self.dtype,
    ).to(self.device)

generator = GeneratorWrapper(model_name, model_ckpt)


css = """
.btn-green {
  background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important;
  border-color: #22c55e !important;
  color: #166534 !important;
}
.btn-green:hover {
  background-image: linear-gradient(to bottom right, #86efac, #86efac) !important;
}
.btn-red {
  background: linear-gradient(to bottom right, #fda4af, #fb7185) !important;
  border-color: #fb7185 !important;
  color: #9f1239 !important;
}
.btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;}

/*****/

.dark .btn-green {
  background-image: linear-gradient(to bottom right, #047857, #065f46) !important;
  border-color: #047857 !important;
  color: #ffffff !important;
}
.dark .btn-green:hover {
  background-image: linear-gradient(to bottom right, #047857, #047857) !important;
}
.dark .btn-red {
  background: linear-gradient(to bottom right, #be123c, #9f1239) !important;
  border-color: #be123c !important;
  color: #ffffff !important;
}
.dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;}
"""

def generate_fn(
    feedback_enabled,
    max_feedback_imgs,
    prompt,
    neg_prompt,
    liked,
    disliked,
    denoising_steps,
    guidance_scale,
    feedback_start,
    feedback_end,
    min_weight,
    max_weight,
    neg_scale,
    batch_size,
    seed,
    progress=gr.Progress(track_tqdm=True),
):
  try:
    if seed < 0:
      seed = random.randint(1,9999999999999999) #16 digits is an arbitrary limit

    logger.info(f"Generate images: {prompt=}, {neg_prompt=}, {len(liked)=}, {len(disliked)=}, {max_feedback_imgs=}, {batch_size=}, {seed=}")
    logger.ingo(f"Params: {denoising_steps=}, {guidance_scale=}, {feedback_start=}, {feedback_end=}, {min_weight=}, {max_weight=}, {neg_scale=}")

    max_feedback_imgs = max(0, int(max_feedback_imgs))
    total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0)

    if not feedback_enabled:
      liked = []
      disliked = []
    elif total_images > max_feedback_imgs:
      if liked and disliked:
        max_disliked = min(len(disliked), max_feedback_imgs // 2)
        max_liked = min(len(liked), max_feedback_imgs - max_disliked)
        if max_liked > len(liked):
          max_disliked = max_feedback_imgs - max_liked
        liked = liked[-max_liked:]
        disliked = disliked[-max_disliked:]
      elif liked:
        liked = liked[-max_feedback_imgs:]
        disliked = []
      else:
        liked = []
        disliked = disliked[-max_feedback_imgs:]
    # else: keep all feedback images
    
    generate_kwargs = {
        "prompt": prompt,
        "negative_prompt": neg_prompt,
        "liked": liked,
        "disliked": disliked,
        "denoising_steps": denoising_steps,
        "guidance_scale": guidance_scale,
        "feedback_start": feedback_start,
        "feedback_end": feedback_end,
        "min_weight": min_weight,
        "max_weight": max_weight,
        "neg_scale": neg_scale,
        "seed": seed,
        "n_images": batch_size,
    }

    try:
      images = generator.generate(**generate_kwargs)
    except RuntimeError as err:
      if 'out of memory' in str(err):
        generator.reload()
        logger.info(f"Ran out of memory trying to generate {batch_size=} images with {len(liked)=} and {len(disliked)=} feedback images.")
      raise
    return [(img, f"Image {i+1}") for i, img in enumerate(images)], images, seed
  except Exception as err:
    logger.error(err)
    raise gr.Error(str(err))


def add_img_from_list(i, curr_imgs, all_imgs):
  if all_imgs is None:
    all_imgs = []
  if i >= 0 and i < len(curr_imgs):
    all_imgs.append(curr_imgs[i])
  return all_imgs, all_imgs  # return (gallery, state)

def add_img(img, all_imgs):
  if all_imgs is None:
    all_imgs = []
  all_imgs.append(img)
  return None, all_imgs, all_imgs

def remove_img_from_list(event: gr.SelectData, imgs):
  if event.index >= 0 and event.index < len(imgs):
    imgs.pop(event.index)
  return imgs, imgs

def duplicate_seed_value(seed): #I don't like the progress bar showing on the previous seed box and this is how I hide it
    return seed

with gr.Blocks(css=css) as demo:

  liked_imgs = gr.State([])
  disliked_imgs = gr.State([])
  curr_imgs = gr.State([])

  with gr.Row():
    with gr.Column(scale=100):
      prompt = gr.Textbox(label="Prompt")
      neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality")
    submit_btn = gr.Button("Generate", variant="primary", min_width="96px")

  with gr.Row(equal_height=False):
    with gr.Column():
      denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps")
      guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale")
      batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size", interactive=False)
      seed = gr.Number(-1, minimum=-1, precision=0, label="Seed")
      max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)")
      feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True)

      with gr.Accordion("Liked Images", open=True):
        liked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload liked image")
        like_gallery = gr.Gallery(label="πŸ‘ Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
        clear_liked_btn = gr.Button("Clear likes")

      with gr.Accordion("Disliked Images", open=True):
        disliked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload disliked image")
        dislike_gallery = gr.Gallery(label="πŸ‘Ž Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
        clear_disliked_btn = gr.Button("Clear dislikes")

      with gr.Accordion("Feedback parameters", open=False):
        feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.")
        feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.")
        feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)")
        feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)")
        feedback_neg_scale = gr.Slider(0.0, 10.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)")

    with gr.Column():
      gallery = gr.Gallery(label="Generated images")

      like_btns = []
      dislike_btns = []
      with gr.Row():
        for i in range(0, 2):
          like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
          like_btns.append(like_btn)
      with gr.Row():
        for i in range(2, 4):
          like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
          like_btns.append(like_btn)
      with gr.Row():
        for i in range(0, 2):
          dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
          dislike_btns.append(dislike_btn)
      with gr.Row():
        for i in range(2, 4):
          dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
          dislike_btns.append(dislike_btn)

      prev_seed = gr.Number(-1, label="Previous seed", interactive=False)
      prev_seed_hid = gr.Number(-1, visible=False)

  generate_params = [
      feedback_enabled,
      max_feedback_imgs,
      prompt,
      neg_prompt,
      liked_imgs,
      disliked_imgs,
      denoising_steps,
      guidance_scale,
      feedback_start,
      feedback_end,
      feedback_min_weight,
      feedback_max_weight,
      feedback_neg_scale,
      batch_size,
      seed,
  ]
  submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs, prev_seed_hid], queue=True)
  prev_seed_hid.change(duplicate_seed_value, prev_seed_hid, prev_seed, queue=False)
    
  for i, like_btn in enumerate(like_btns):
    like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False)
  for i, dislike_btn in enumerate(dislike_btns):
    dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)

  like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False)
  dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)

  liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False)
  disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False)

  clear_liked_btn.click(lambda: [[], []], None, [liked_imgs, like_gallery], queue=False)
  clear_disliked_btn.click(lambda: [[], []], None, [disliked_imgs, dislike_gallery], queue=False)

demo.queue(1)
demo.launch(debug=True)