Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,86 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def extract_segments(transcript):
|
6 |
"""
|
7 |
Extract segments from a transcript.
|
8 |
-
|
|
|
|
|
9 |
"""
|
|
|
10 |
pattern = r"(?:\*\*)?([A-Za-z]+)(?:\*\*)?\s+\*?([0-9:]+)\*?\s*\n\n(.*?)(?=\n\n(?:\*\*)?[A-Za-z]+|\Z)"
|
11 |
-
segments = []
|
12 |
|
13 |
-
|
|
|
14 |
speaker, timestamp, text = match.groups()
|
15 |
-
segments.append((speaker, timestamp, text.strip()))
|
16 |
|
17 |
return segments
|
18 |
|
19 |
-
def
|
20 |
-
"""
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
matches = {}
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
if speaker not in auto_by_speaker:
|
33 |
-
auto_by_speaker[speaker] = []
|
34 |
-
auto_by_speaker[speaker].append(i)
|
35 |
|
36 |
-
#
|
37 |
-
for h_idx,
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
return matches
|
43 |
|
44 |
def update_timestamps(human_transcript, auto_transcript):
|
45 |
"""
|
46 |
Update timestamps in human transcript using timestamps from auto transcript.
|
47 |
-
Preserves all human edits and formatting.
|
48 |
"""
|
49 |
# Extract segments from both transcripts
|
50 |
human_segments = extract_segments(human_transcript)
|
@@ -53,60 +89,79 @@ def update_timestamps(human_transcript, auto_transcript):
|
|
53 |
if not human_segments or not auto_segments:
|
54 |
return "Error: Could not parse transcripts. Check formatting.", ""
|
55 |
|
56 |
-
# Find matching segments
|
57 |
-
matches =
|
58 |
|
59 |
-
# Create updated transcript
|
60 |
updated_transcript = human_transcript
|
61 |
|
62 |
# Replace timestamps in reverse order to avoid position shifts
|
63 |
for h_idx in sorted(matches.keys(), reverse=True):
|
64 |
a_idx = matches[h_idx]
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
# Determine if markdown is used
|
70 |
is_markdown = "**" in human_transcript
|
71 |
|
72 |
-
# Create patterns to match the timestamp in the original text
|
73 |
if is_markdown:
|
74 |
-
|
75 |
-
|
76 |
-
replacement = f"**{h_speaker}** *{a_timestamp}*"
|
77 |
else:
|
78 |
-
|
79 |
-
|
80 |
-
replacement = f"{h_speaker} {a_timestamp}"
|
81 |
|
82 |
# Replace the timestamp in the transcript
|
83 |
updated_transcript = re.sub(pattern, replacement, updated_transcript, 1)
|
84 |
|
85 |
# Generate report
|
|
|
|
|
|
|
|
|
86 |
report = f"### Timestamp Update Report\n\n"
|
87 |
-
report += f"- Human segments: {
|
88 |
-
report += f"- Auto segments: {
|
89 |
-
report += f"-
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
report +=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
return updated_transcript, report
|
96 |
|
97 |
# Create Gradio interface
|
98 |
-
with gr.Blocks(title="
|
99 |
gr.Markdown("""
|
100 |
-
# 🎙️
|
101 |
|
102 |
-
This tool updates timestamps in a human-edited transcript
|
103 |
|
104 |
## Instructions:
|
105 |
1. Paste your auto-generated transcript (with correct timestamps)
|
106 |
-
2. Paste your human-edited transcript (with old timestamps)
|
107 |
3. Click "Update Timestamps"
|
108 |
|
109 |
-
The tool will
|
110 |
""")
|
111 |
|
112 |
with gr.Row():
|
@@ -119,7 +174,7 @@ with gr.Blocks(title="Simple Transcript Timestamp Updater") as demo:
|
|
119 |
|
120 |
with gr.Column():
|
121 |
human_transcript = gr.Textbox(
|
122 |
-
label="Human-Edited Transcript (
|
123 |
placeholder="Paste your human-edited transcript here...",
|
124 |
lines=15
|
125 |
)
|
@@ -136,7 +191,7 @@ with gr.Blocks(title="Simple Transcript Timestamp Updater") as demo:
|
|
136 |
|
137 |
with gr.TabItem("Report"):
|
138 |
report = gr.Markdown(
|
139 |
-
label="Report",
|
140 |
value="Report will appear here..."
|
141 |
)
|
142 |
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
+
import difflib
|
4 |
+
from typing import List, Dict, Tuple, Optional
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class Segment:
|
9 |
+
"""A segment of a transcript with speaker, timestamp, and text"""
|
10 |
+
speaker: str
|
11 |
+
timestamp: str
|
12 |
+
text: str
|
13 |
+
index: int # Position in the original list
|
14 |
|
15 |
def extract_segments(transcript):
|
16 |
"""
|
17 |
Extract segments from a transcript.
|
18 |
+
Works with both formats:
|
19 |
+
- Speaker LastName 00:00:00
|
20 |
+
- **Speaker LastName** *00:00:00*
|
21 |
"""
|
22 |
+
# This regex matches both markdown and plain text formats
|
23 |
pattern = r"(?:\*\*)?([A-Za-z]+)(?:\*\*)?\s+\*?([0-9:]+)\*?\s*\n\n(.*?)(?=\n\n(?:\*\*)?[A-Za-z]+|\Z)"
|
|
|
24 |
|
25 |
+
segments = []
|
26 |
+
for i, match in enumerate(re.finditer(pattern, transcript, re.DOTALL)):
|
27 |
speaker, timestamp, text = match.groups()
|
28 |
+
segments.append(Segment(speaker, timestamp, text.strip(), i))
|
29 |
|
30 |
return segments
|
31 |
|
32 |
+
def clean_text_for_matching(text):
|
33 |
+
"""Clean text for better matching between transcripts"""
|
34 |
+
# Remove markdown links but keep the text
|
35 |
+
text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text)
|
36 |
|
37 |
+
# Remove markdown formatting
|
38 |
+
text = re.sub(r'\*\*|\*', '', text)
|
39 |
+
|
40 |
+
# Remove punctuation and normalize whitespace
|
41 |
+
text = re.sub(r'[,.;:!?()[\]{}]', ' ', text)
|
42 |
+
text = re.sub(r'\s+', ' ', text)
|
43 |
+
|
44 |
+
return text.lower().strip()
|
45 |
+
|
46 |
+
def find_best_matches(auto_segments, human_segments):
|
47 |
+
"""
|
48 |
+
Find the best matching segments between auto and human transcripts.
|
49 |
+
Uses text similarity to match segments.
|
50 |
"""
|
51 |
matches = {}
|
52 |
|
53 |
+
# Prepare cleaned texts for comparison
|
54 |
+
auto_cleaned_texts = [clean_text_for_matching(seg.text) for seg in auto_segments]
|
55 |
+
human_cleaned_texts = [clean_text_for_matching(seg.text) for seg in human_segments]
|
|
|
|
|
|
|
56 |
|
57 |
+
# For each human segment, find the best matching auto segment
|
58 |
+
for h_idx, h_text in enumerate(human_cleaned_texts):
|
59 |
+
best_match = -1
|
60 |
+
best_score = 0.6 # Minimum similarity threshold
|
61 |
+
|
62 |
+
for a_idx, a_text in enumerate(auto_cleaned_texts):
|
63 |
+
# Skip already matched segments
|
64 |
+
if a_idx in matches.values():
|
65 |
+
continue
|
66 |
+
|
67 |
+
# Calculate similarity
|
68 |
+
similarity = difflib.SequenceMatcher(None, h_text, a_text).ratio()
|
69 |
+
|
70 |
+
# If this is the best match so far, record it
|
71 |
+
if similarity > best_score:
|
72 |
+
best_score = similarity
|
73 |
+
best_match = a_idx
|
74 |
+
|
75 |
+
# If we found a good match, record it
|
76 |
+
if best_match != -1:
|
77 |
+
matches[h_idx] = best_match
|
78 |
|
79 |
return matches
|
80 |
|
81 |
def update_timestamps(human_transcript, auto_transcript):
|
82 |
"""
|
83 |
Update timestamps in human transcript using timestamps from auto transcript.
|
|
|
84 |
"""
|
85 |
# Extract segments from both transcripts
|
86 |
human_segments = extract_segments(human_transcript)
|
|
|
89 |
if not human_segments or not auto_segments:
|
90 |
return "Error: Could not parse transcripts. Check formatting.", ""
|
91 |
|
92 |
+
# Find matching segments based on text similarity
|
93 |
+
matches = find_best_matches(auto_segments, human_segments)
|
94 |
|
95 |
+
# Create updated transcript with new timestamps
|
96 |
updated_transcript = human_transcript
|
97 |
|
98 |
# Replace timestamps in reverse order to avoid position shifts
|
99 |
for h_idx in sorted(matches.keys(), reverse=True):
|
100 |
a_idx = matches[h_idx]
|
101 |
|
102 |
+
human_seg = human_segments[h_idx]
|
103 |
+
auto_seg = auto_segments[a_idx]
|
104 |
|
105 |
# Determine if markdown is used
|
106 |
is_markdown = "**" in human_transcript
|
107 |
|
108 |
+
# Create regex patterns to match the timestamp in the original text
|
109 |
if is_markdown:
|
110 |
+
pattern = fr"\*\*{human_seg.speaker}\*\*\s+\*{human_seg.timestamp}\*"
|
111 |
+
replacement = f"**{human_seg.speaker}** *{auto_seg.timestamp}*"
|
|
|
112 |
else:
|
113 |
+
pattern = fr"{human_seg.speaker}\s+{human_seg.timestamp}"
|
114 |
+
replacement = f"{human_seg.speaker} {auto_seg.timestamp}"
|
|
|
115 |
|
116 |
# Replace the timestamp in the transcript
|
117 |
updated_transcript = re.sub(pattern, replacement, updated_transcript, 1)
|
118 |
|
119 |
# Generate report
|
120 |
+
match_count = len(matches)
|
121 |
+
human_count = len(human_segments)
|
122 |
+
auto_count = len(auto_segments)
|
123 |
+
|
124 |
report = f"### Timestamp Update Report\n\n"
|
125 |
+
report += f"- Human segments: {human_count}\n"
|
126 |
+
report += f"- Auto segments: {auto_count}\n"
|
127 |
+
report += f"- Matched segments with updated timestamps: {match_count} ({match_count/human_count*100:.1f}%)\n"
|
128 |
+
|
129 |
+
if match_count < human_count:
|
130 |
+
report += f"- Segments not updated: {human_count - match_count}\n"
|
131 |
|
132 |
+
# Print some example matches for verification
|
133 |
+
if matches:
|
134 |
+
report += "\n### Example matches (for verification):\n\n"
|
135 |
+
|
136 |
+
# Show up to 5 matches
|
137 |
+
sample_matches = list(matches.items())[:5]
|
138 |
+
for h_idx, a_idx in sample_matches:
|
139 |
+
h_seg = human_segments[h_idx]
|
140 |
+
a_seg = auto_segments[a_idx]
|
141 |
+
|
142 |
+
# Truncate text samples for readability
|
143 |
+
h_preview = h_seg.text[:50] + "..." if len(h_seg.text) > 50 else h_seg.text
|
144 |
+
a_preview = a_seg.text[:50] + "..." if len(a_seg.text) > 50 else a_seg.text
|
145 |
+
|
146 |
+
report += f"- {h_seg.speaker}: timestamp changed from `{h_seg.timestamp}` to `{a_seg.timestamp}`\n"
|
147 |
+
report += f" - Human: \"{h_preview}\"\n"
|
148 |
+
report += f" - Auto: \"{a_preview}\"\n\n"
|
149 |
|
150 |
return updated_transcript, report
|
151 |
|
152 |
# Create Gradio interface
|
153 |
+
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
154 |
gr.Markdown("""
|
155 |
+
# 🎙️ Transcript Timestamp Updater
|
156 |
|
157 |
+
This tool updates timestamps in a human-edited transcript by taking correct timestamps from an auto-generated transcript.
|
158 |
|
159 |
## Instructions:
|
160 |
1. Paste your auto-generated transcript (with correct timestamps)
|
161 |
+
2. Paste your human-edited transcript (with old timestamps that need updating)
|
162 |
3. Click "Update Timestamps"
|
163 |
|
164 |
+
The tool will preserve all human edits and only update the timestamps.
|
165 |
""")
|
166 |
|
167 |
with gr.Row():
|
|
|
174 |
|
175 |
with gr.Column():
|
176 |
human_transcript = gr.Textbox(
|
177 |
+
label="Human-Edited Transcript (timestamps need updating)",
|
178 |
placeholder="Paste your human-edited transcript here...",
|
179 |
lines=15
|
180 |
)
|
|
|
191 |
|
192 |
with gr.TabItem("Report"):
|
193 |
report = gr.Markdown(
|
194 |
+
label="Matching Report",
|
195 |
value="Report will appear here..."
|
196 |
)
|
197 |
|