Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
import difflib
|
4 |
+
from typing import List, Dict, Tuple, Optional
|
5 |
+
import numpy as np
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class Segment:
|
10 |
+
"""Represents a transcript segment"""
|
11 |
+
speaker: str
|
12 |
+
timestamp: str
|
13 |
+
text: str
|
14 |
+
raw_text: str # For matching purposes - original text without formatting
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class Match:
|
18 |
+
"""Represents a match between segments"""
|
19 |
+
auto_index: int
|
20 |
+
human_index: int
|
21 |
+
similarity: float
|
22 |
+
|
23 |
+
def parse_auto_transcript(transcript: str) -> List[Segment]:
|
24 |
+
"""Parse the auto-generated transcript"""
|
25 |
+
# Pattern to match "Speaker X 00:00:00" followed by text
|
26 |
+
pattern = r"(?:\*\*)?Speaker (\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?Speaker |\Z)"
|
27 |
+
segments = []
|
28 |
+
|
29 |
+
for match in re.finditer(pattern, transcript, re.DOTALL):
|
30 |
+
speaker, timestamp, text = match.groups()
|
31 |
+
# Remove any markdown formatting for matching purposes
|
32 |
+
raw_text = re.sub(r'\*\*|\*', '', text.strip())
|
33 |
+
segments.append(Segment(speaker, timestamp, text.strip(), raw_text))
|
34 |
+
|
35 |
+
return segments
|
36 |
+
|
37 |
+
def parse_human_transcript(transcript: str) -> List[Segment]:
|
38 |
+
"""Parse the human-edited transcript"""
|
39 |
+
# Pattern to match both markdown and plain text formats
|
40 |
+
# This handles both "**Speaker X** *00:00:00*" and "Speaker X 00:00:00"
|
41 |
+
pattern = r"(?:\*\*)?(?:Speaker )?(\w+)(?:\*\*)? (?:\*)?(\d{2}:\d{2}:\d{2})(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker )?|\Z)"
|
42 |
+
segments = []
|
43 |
+
|
44 |
+
for match in re.finditer(pattern, transcript, re.DOTALL):
|
45 |
+
speaker, timestamp, text = match.groups()
|
46 |
+
# Remove any markdown formatting for matching purposes
|
47 |
+
raw_text = re.sub(r'\*\*|\*|\[.*?\]\(.*?\)', '', text.strip())
|
48 |
+
segments.append(Segment(speaker, timestamp, text.strip(), raw_text))
|
49 |
+
|
50 |
+
return segments
|
51 |
+
|
52 |
+
def similarity_score(text1: str, text2: str) -> float:
|
53 |
+
"""Calculate similarity between two text segments"""
|
54 |
+
# Remove all markdown, punctuation, and lowercase for better matching
|
55 |
+
clean1 = re.sub(r'[^\w\s]', '', text1.lower())
|
56 |
+
clean2 = re.sub(r'[^\w\s]', '', text2.lower())
|
57 |
+
|
58 |
+
# Use difflib's SequenceMatcher for similarity
|
59 |
+
return difflib.SequenceMatcher(None, clean1, clean2).ratio()
|
60 |
+
|
61 |
+
def find_best_matches(auto_segments: List[Segment], human_segments: List[Segment]) -> List[Match]:
|
62 |
+
"""Find the best matching segments between auto and human transcripts"""
|
63 |
+
matches = []
|
64 |
+
used_human_indices = set()
|
65 |
+
|
66 |
+
# First pass: Find obvious matches (high similarity)
|
67 |
+
for auto_idx, auto_segment in enumerate(auto_segments):
|
68 |
+
best_match_idx = -1
|
69 |
+
best_similarity = 0.0
|
70 |
+
|
71 |
+
for human_idx, human_segment in enumerate(human_segments):
|
72 |
+
if human_idx in used_human_indices:
|
73 |
+
continue
|
74 |
+
|
75 |
+
similarity = similarity_score(auto_segment.raw_text, human_segment.raw_text)
|
76 |
+
|
77 |
+
if similarity > best_similarity and similarity >= 0.6: # Threshold for a good match
|
78 |
+
best_similarity = similarity
|
79 |
+
best_match_idx = human_idx
|
80 |
+
|
81 |
+
if best_match_idx >= 0:
|
82 |
+
matches.append(Match(auto_idx, best_match_idx, best_similarity))
|
83 |
+
used_human_indices.add(best_match_idx)
|
84 |
+
|
85 |
+
# Second pass: Try to match remaining segments with a lower threshold
|
86 |
+
for auto_idx, auto_segment in enumerate(auto_segments):
|
87 |
+
if any(m.auto_index == auto_idx for m in matches):
|
88 |
+
continue
|
89 |
+
|
90 |
+
best_match_idx = -1
|
91 |
+
best_similarity = 0.0
|
92 |
+
|
93 |
+
for human_idx, human_segment in enumerate(human_segments):
|
94 |
+
if human_idx in used_human_indices:
|
95 |
+
continue
|
96 |
+
|
97 |
+
similarity = similarity_score(auto_segment.raw_text, human_segment.raw_text)
|
98 |
+
|
99 |
+
if similarity > best_similarity and similarity >= 0.4: # Lower threshold
|
100 |
+
best_similarity = similarity
|
101 |
+
best_match_idx = human_idx
|
102 |
+
|
103 |
+
if best_match_idx >= 0:
|
104 |
+
matches.append(Match(auto_idx, best_match_idx, best_similarity))
|
105 |
+
used_human_indices.add(best_match_idx)
|
106 |
+
|
107 |
+
return matches
|
108 |
+
|
109 |
+
def update_timestamps(auto_segments: List[Segment], human_segments: List[Segment], matches: List[Match]) -> str:
|
110 |
+
"""Update timestamps in human transcript based on matches"""
|
111 |
+
# Create a new list for the updated segments
|
112 |
+
updated_segments = human_segments.copy()
|
113 |
+
|
114 |
+
for match in matches:
|
115 |
+
auto_segment = auto_segments[match.auto_index]
|
116 |
+
human_segment = human_segments[match.human_index]
|
117 |
+
|
118 |
+
# Update the timestamp in the human segment
|
119 |
+
updated_segments[match.human_index] = Segment(
|
120 |
+
speaker=human_segment.speaker,
|
121 |
+
timestamp=auto_segment.timestamp,
|
122 |
+
text=human_segment.text,
|
123 |
+
raw_text=human_segment.raw_text
|
124 |
+
)
|
125 |
+
|
126 |
+
# Generate the updated transcript
|
127 |
+
result = []
|
128 |
+
for segment in updated_segments:
|
129 |
+
# Check if this is a markdown-formatted transcript
|
130 |
+
if "**" in human_segments[0].text or "*" in human_segments[0].timestamp:
|
131 |
+
result.append(f"**{segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
132 |
+
else:
|
133 |
+
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
134 |
+
|
135 |
+
return "\n\n".join(result)
|
136 |
+
|
137 |
+
def find_unmatched_segments(auto_segments: List[Segment], matches: List[Match]) -> List[int]:
|
138 |
+
"""Find segments in the auto transcript that weren't matched"""
|
139 |
+
matched_auto_indices = {match.auto_index for match in matches}
|
140 |
+
return [i for i in range(len(auto_segments)) if i not in matched_auto_indices]
|
141 |
+
|
142 |
+
def format_unmatched_segments(auto_segments: List[Segment], unmatched_indices: List[int], is_markdown: bool) -> str:
|
143 |
+
"""Format unmatched segments for display"""
|
144 |
+
if not unmatched_indices:
|
145 |
+
return "No unmatched segments found"
|
146 |
+
|
147 |
+
result = []
|
148 |
+
for idx in unmatched_indices:
|
149 |
+
segment = auto_segments[idx]
|
150 |
+
if is_markdown:
|
151 |
+
result.append(f"**Speaker {segment.speaker}** *{segment.timestamp}*\n\n{segment.text}")
|
152 |
+
else:
|
153 |
+
result.append(f"Speaker {segment.speaker} {segment.timestamp}\n\n{segment.text}")
|
154 |
+
|
155 |
+
return "### Unmatched Segments (New Content)\n\n" + "\n\n".join(result)
|
156 |
+
|
157 |
+
def process_transcripts(auto_transcript: str, human_transcript: str):
|
158 |
+
"""Process transcripts and update timestamps"""
|
159 |
+
# Parse both transcripts
|
160 |
+
auto_segments = parse_auto_transcript(auto_transcript)
|
161 |
+
human_segments = parse_human_transcript(human_transcript)
|
162 |
+
|
163 |
+
# Early check for empty inputs
|
164 |
+
if not auto_segments or not human_segments:
|
165 |
+
return "Error: Could not parse one or both transcripts. Please check the format.", "", ""
|
166 |
+
|
167 |
+
# Find matches between segments
|
168 |
+
matches = find_best_matches(auto_segments, human_segments)
|
169 |
+
|
170 |
+
# Find unmatched segments
|
171 |
+
unmatched_indices = find_unmatched_segments(auto_segments, matches)
|
172 |
+
|
173 |
+
# Determine if we're using markdown
|
174 |
+
is_markdown = "**" in human_transcript or "*" in human_transcript
|
175 |
+
|
176 |
+
# Update timestamps
|
177 |
+
updated_transcript = update_timestamps(auto_segments, human_segments, matches)
|
178 |
+
|
179 |
+
# Format unmatched segments
|
180 |
+
unmatched_segments = format_unmatched_segments(auto_segments, unmatched_indices, is_markdown)
|
181 |
+
|
182 |
+
# Stats about the matching
|
183 |
+
stats = f"### Matching Statistics\n\n"
|
184 |
+
stats += f"- Auto-generated segments: {len(auto_segments)}\n"
|
185 |
+
stats += f"- Human-edited segments: {len(human_segments)}\n"
|
186 |
+
stats += f"- Matched segments: {len(matches)}\n"
|
187 |
+
stats += f"- Unmatched segments: {len(unmatched_indices)}\n"
|
188 |
+
|
189 |
+
# Add match quality histogram
|
190 |
+
if matches:
|
191 |
+
similarities = [match.similarity for match in matches]
|
192 |
+
stats += f"- Average match similarity: {sum(similarities)/len(similarities):.2f}\n"
|
193 |
+
|
194 |
+
# Histogram of match qualities
|
195 |
+
bins = [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
196 |
+
hist, _ = np.histogram(similarities, bins=bins)
|
197 |
+
stats += "\n#### Match Quality Distribution\n\n"
|
198 |
+
for i, count in enumerate(hist):
|
199 |
+
lower = bins[i]
|
200 |
+
upper = bins[i+1]
|
201 |
+
stats += f"- {lower:.1f}-{upper:.1f}: {count} matches\n"
|
202 |
+
|
203 |
+
return updated_transcript, unmatched_segments, stats
|
204 |
+
|
205 |
+
# Create Gradio interface
|
206 |
+
with gr.Blocks(title="Transcript Timestamp Updater") as demo:
|
207 |
+
gr.Markdown("""
|
208 |
+
# Transcript Timestamp Updater
|
209 |
+
|
210 |
+
This tool updates timestamps in a human-edited transcript based on a new auto-generated transcript.
|
211 |
+
|
212 |
+
## Instructions:
|
213 |
+
1. Paste your new auto-generated transcript (with updated timestamps)
|
214 |
+
2. Paste your human-edited transcript (with old timestamps)
|
215 |
+
3. Click "Update Timestamps" to generate a new version of the human-edited transcript with updated timestamps
|
216 |
+
|
217 |
+
The tool will try to match segments between the two transcripts and update the timestamps accordingly.
|
218 |
+
""")
|
219 |
+
|
220 |
+
with gr.Row():
|
221 |
+
with gr.Column():
|
222 |
+
auto_transcript = gr.Textbox(
|
223 |
+
label="New Auto-Generated Transcript (with updated timestamps)",
|
224 |
+
placeholder="Paste the new auto-generated transcript here...",
|
225 |
+
lines=15
|
226 |
+
)
|
227 |
+
|
228 |
+
with gr.Column():
|
229 |
+
human_transcript = gr.Textbox(
|
230 |
+
label="Human-Edited Transcript (with old timestamps)",
|
231 |
+
placeholder="Paste your human-edited transcript here...",
|
232 |
+
lines=15
|
233 |
+
)
|
234 |
+
|
235 |
+
update_btn = gr.Button("Update Timestamps")
|
236 |
+
|
237 |
+
with gr.Tabs():
|
238 |
+
with gr.TabItem("Updated Transcript"):
|
239 |
+
updated_transcript = gr.TextArea(
|
240 |
+
label="Updated Human Transcript",
|
241 |
+
placeholder="The updated transcript will appear here...",
|
242 |
+
lines=20
|
243 |
+
)
|
244 |
+
|
245 |
+
with gr.TabItem("Unmatched Segments"):
|
246 |
+
unmatched_segments = gr.Markdown(
|
247 |
+
label="Unmatched Segments",
|
248 |
+
value="Unmatched segments will appear here..."
|
249 |
+
)
|
250 |
+
|
251 |
+
with gr.TabItem("Statistics"):
|
252 |
+
stats = gr.Markdown(
|
253 |
+
label="Matching Statistics",
|
254 |
+
value="Statistics will appear here..."
|
255 |
+
)
|
256 |
+
|
257 |
+
update_btn.click(
|
258 |
+
fn=process_transcripts,
|
259 |
+
inputs=[auto_transcript, human_transcript],
|
260 |
+
outputs=[updated_transcript, unmatched_segments, stats]
|
261 |
+
)
|
262 |
+
|
263 |
+
# Launch the app
|
264 |
+
if __name__ == "__main__":
|
265 |
+
demo.launch()
|