import os import subprocess import gradio as gr from magika import Magika from huggingface_hub import login # Get the HF token and space author name from environment variables hf_token = os.getenv("HF_TOKEN") hf_user = os.getenv("SPACE_AUTHOR_NAME") if not hf_token: raise ValueError("HF_TOKEN environment variable is not set") if not hf_user: raise ValueError("SPACE_AUTHOR_NAME environment variable is not set") # Perform login using the token # login(token=hf_token, add_to_git_credential=True) SUPPORTED_FILE_TYPES = ["txt", "python", "markdown", "yaml", "json", "csv", "tsv", "xml", "html"] def validate_url(url): return url.startswith('https://') def clone_repo(url, repo_dir, hf_token, hf_user): env = os.environ.copy() env['GIT_LFS_SKIP_SMUDGE'] = '1' # Construct the Git URL with the token and author name for authentication token_url = url.replace('https://', f'https://{hf_user}:{hf_token}@') result = subprocess.run(["git", "clone", token_url, repo_dir], env=env, capture_output=True, text=True) if result.returncode != 0: return False, result.stderr return True, None def get_file_summary(file_path, file_type): size = os.path.getsize(file_path) return { "name": os.path.relpath(file_path), "type": file_type, "size": size, } def read_file_content(file_path): with open(file_path, "r", encoding="utf-8", errors="ignore") as file: return file.read() def validate_file_types(directory): m = Magika() file_types = {} for root, _, files in os.walk(directory): if '.git' in root: continue for file_name in files: file_path = os.path.join(root, file_name) try: with open(file_path, 'rb') as file: file_bytes = file.read() result = m.identify_bytes(file_bytes) file_types[file_path] = result.output.ct_label except Exception as e: file_types[file_path] = f"Error: {str(e)}" return file_types def extract_repo_content(url, hf_token, hf_user): if not validate_url(url): return [{"header": {"name": "Error", "type": "error", "size": 0}, "content": "Invalid URL"}] repo_dir = "./temp_repo" if os.path.exists(repo_dir): subprocess.run(["rm", "-rf", repo_dir]) success, error = clone_repo(url, repo_dir, hf_token, hf_user) if not success: return [{"header": {"name": "Error", "type": "error", "size": 0}, "content": f"Failed to clone repository: {error}"}] file_types = validate_file_types(repo_dir) extracted_content = [] for file_path, file_type in file_types.items(): file_summary = get_file_summary(file_path, file_type) content = {"header": file_summary} if file_type in SUPPORTED_FILE_TYPES and file_summary["size"] <= 32 * 1024: try: content["content"] = read_file_content(file_path) except Exception as e: content["content"] = f"Failed to read file content: {str(e)}" else: content["content"] = "File too large or binary, content not captured." extracted_content.append(content) # Cleanup temporary directory subprocess.run(["rm", "-rf", repo_dir]) return extracted_content def format_output(extracted_content, repo_url): formatted_output = f"# Repository URL: {repo_url}\n\n" for file_data in extracted_content: if isinstance(file_data, dict) and 'header' in file_data: formatted_output += f"### File: {file_data['header']['name']}\n" formatted_output += f"**Type:** {file_data['header']['type']}\n" formatted_output += f"**Size:** {file_data['header']['size']} bytes\n" formatted_output += "#### Content:\n" formatted_output += f"```\n{file_data['content']}\n```\n\n" else: formatted_output += "Error in file data format.\n" return formatted_output def extract_and_display(url): extracted_content = extract_repo_content(url, hf_token, hf_user) formatted_output = format_output(extracted_content, url) return formatted_output app = gr.Blocks(theme="sudeepshouche/minimalist") with app: gr.Markdown("# HF Space / Model Content Extractor") url_input = gr.Textbox(label="Hugging Face Space/Model URL", placeholder="for example, https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf") output_display = gr.Textbox(show_copy_button=True, lines=20, placeholder="Repository content will be extracted here...\n\nReview and search through the content OR simply copy and load it into your favorite LLM for analysis!. 🤖") extract_button = gr.Button("Extract Content") extract_button.click(fn=extract_and_display, inputs=url_input, outputs=output_display) app.launch()