File size: 4,348 Bytes
88183ad
7bbd83c
68bab0c
7bbd83c
 
 
68bab0c
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ee19f
68bab0c
6c226f9
a11fbef
 
68bab0c
9d6fa91
554c0b5
6c226f9
68bab0c
b3ee19f
 
 
 
 
 
 
 
68bab0c
 
 
b3ee19f
68bab0c
 
b3ee19f
68bab0c
 
f4720e3
35c87e9
68bab0c
 
 
 
 
 
 
 
6c226f9
554c0b5
8dba9f0
7bbd83c
 
6c226f9
554c0b5
7bbd83c
520f263
7bbd83c
 
 
 
6c226f9
d790c0b
 
 
 
 
 
554c0b5
 
 
 
68bab0c
 
 
7bbd83c
d790c0b
7bbd83c
66efbc3
68bab0c
6b09585
7bbd83c
d790c0b
 
 
 
 
b97a3c2
 
68bab0c
 
 
 
 
 
7bbd83c
 
6c226f9
68bab0c
7bbd83c
 
 
68bab0c
 
 
 
 
 
 
 
7bbd83c
6c226f9
 
 
7bbd83c
6c226f9
7097513
68bab0c
 
 
 
 
 
7097513
7bbd83c
a5bfe25
6c226f9
b95b5ca
 
6c226f9
 
 
 
 
 
68bab0c
 
 
6c226f9
ab14d7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import json
import time
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import tempfile

import gradio as gr
import yt_dlp as youtube_dl
from huggingface_hub import CommitScheduler
from transformers import (
    BitsAndBytesConfig,
    AutoModelForSpeechSeq2Seq,
    AutoTokenizer,
    AutoFeatureExtractor,
    pipeline,
)
from transformers.pipelines.audio_utils import ffmpeg_read

import torch  # If you're using PyTorch
import spaces

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
YT_LENGTH_LIMIT_S = 4800  # 1 hour 20 minutes

# Quantization

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    MODEL_NAME,
    quantization_config=bnb_config,
    use_cache=False,
    device_map="auto"
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)

# bnb_config = bnb.QuantizationConfig(bits=4)
pipe = pipeline(
    task="automatic-speech-recognition",
    model=model,
    tokenizer=tokenizer,
    feature_extractor=feature_extractor,
    chunk_length_s=30,
    # device=device,
)

# Define paths and create directory if not exists
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"transcriptions-{uuid4()}.json"

# Initialize CommitScheduler for saving data to Hugging Face Dataset
scheduler = CommitScheduler(
    repo_id="transcript-dataset-repo",
    repo_type="dataset",
    folder_path=JSON_DATASET_DIR,
    path_in_repo="data",
)

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    file_length = info["duration"]
    if file_length > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length))
        raise gr.Error(
            f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video."
        )
    ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download([yt_url])


@spaces.GPU
def yt_transcribe(yt_url, task):
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    text = pipe(
        inputs,
        batch_size=BATCH_SIZE,
        generate_kwargs={"task": task},
        return_timestamps=True,
    )["text"]
    save_transcription(yt_url, text)
    return text


def save_transcription(yt_url, transcription):
    with scheduler.lock:
        with JSON_DATASET_PATH.open("a") as f:
            json.dump(
                {
                    "url": yt_url,
                    "transcription": transcription,
                    "datetime": datetime.now().isoformat(),
                },
                f,
            )
            f.write("\n")

demo = gr.Blocks()

yt_transcribe_interface = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(
            lines=1,
            placeholder="Paste the URL to a YouTube video here",
            label="YouTube URL",
        ),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="Whisper Large V3: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
        f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface(
        [yt_transcribe_interface], ["YouTube"]
    )

demo.queue().launch()