File size: 6,318 Bytes
88183ad
7bbd83c
68bab0c
7bbd83c
 
68bab0c
416dca9
68bab0c
 
 
 
 
 
 
 
 
 
 
b3ee19f
416dca9
751197e
a11fbef
416dca9
68bab0c
9d6fa91
554c0b5
416dca9
6c226f9
416dca9
 
b3ee19f
416dca9
b3ee19f
 
 
 
 
 
 
68bab0c
 
 
b3ee19f
68bab0c
 
b3ee19f
68bab0c
 
f4720e3
68bab0c
 
 
 
 
 
 
6c226f9
416dca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c226f9
d790c0b
 
 
 
 
 
416dca9
554c0b5
 
 
 
68bab0c
 
 
416dca9
7bbd83c
d790c0b
7bbd83c
416dca9
66efbc3
751197e
7bbd83c
416dca9
 
 
 
 
 
 
 
 
d790c0b
 
416dca9
d790c0b
416dca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c226f9
 
 
7bbd83c
6c226f9
7097513
68bab0c
 
 
 
 
 
7097513
7bbd83c
a5bfe25
6c226f9
b95b5ca
 
6c226f9
 
 
 
 
 
68bab0c
 
 
6c226f9
ab14d7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import json
import time
from datetime import datetime
from pathlib import Path
import tempfile
import pandas as pd

import gradio as gr
import yt_dlp as youtube_dl
from transformers import (
    BitsAndBytesConfig,
    AutoModelForSpeechSeq2Seq,
    AutoTokenizer,
    AutoFeatureExtractor,
    pipeline,
)
from transformers.pipelines.audio_utils import ffmpeg_read
import torch  # If you're using PyTorch
from datasets import load_dataset, Dataset, DatasetDict
import spaces

# Constants
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
YT_LENGTH_LIMIT_S = 4800  # 1 hour 20 minutes
DATASET_NAME = "dwb2023/yt-transcripts-v3"

# Environment setup
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

# Model setup
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    MODEL_NAME,
    quantization_config=bnb_config,
    use_cache=False,
    device_map="auto"
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)

pipe = pipeline(
    task="automatic-speech-recognition",
    model=model,
    tokenizer=tokenizer,
    feature_extractor=feature_extractor,
    chunk_length_s=30,
)

def reset_and_update_dataset(new_data):
    # Define the schema for an empty DataFrame
    schema = {
        "url": pd.Series(dtype="str"),
        "transcription": pd.Series(dtype="str"),
        "title": pd.Series(dtype="str"),
        "duration": pd.Series(dtype="int"),
        "uploader": pd.Series(dtype="str"),
        "upload_date": pd.Series(dtype="datetime64[ns]"),
        "description": pd.Series(dtype="str"),
        "datetime": pd.Series(dtype="datetime64[ns]")
    }
    
    # Create an empty DataFrame with the defined schema
    df = pd.DataFrame(schema)
    
    # Append the new data
    df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True)
    
    # Convert back to dataset
    updated_dataset = Dataset.from_pandas(df)
    
    # Push the updated dataset to the hub
    dataset_dict = DatasetDict({"train": updated_dataset})
    dataset_dict.push_to_hub(DATASET_NAME)
    print("Dataset reset and updated successfully!")

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))

    file_length = info["duration"]
    if file_length > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length))
        raise gr.Error(
            f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video."
        )

    ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download([yt_url])
    return info

@spaces.GPU(duration=120)
def yt_transcribe(yt_url, task):
    # Load the dataset
    dataset = load_dataset(DATASET_NAME, split="train")
    
    # Check if the transcription already exists
    for row in dataset:
        if row['url'] == yt_url:
            return row['transcription']  # Return the existing transcription
    
    # If transcription does not exist, perform the transcription
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        info = download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            video_data = f.read()
        inputs = ffmpeg_read(video_data, pipe.feature_extractor.sampling_rate)
        inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
        text = pipe(
            inputs,
            batch_size=BATCH_SIZE,
            generate_kwargs={"task": task},
            return_timestamps=True,
        )["text"]

        # Extract additional fields
        try:
            title = info.get("title", "N/A")
            duration = info.get("duration", 0)
            uploader = info.get("uploader", "N/A")
            upload_date = info.get("upload_date", "N/A")
            description = info.get("description", "N/A")
        except KeyError:
            title = "N/A"
            duration = 0
            uploader = "N/A"
            upload_date = "N/A"
            description = "N/A"

        save_transcription(yt_url, text, title, duration, uploader, upload_date, description)
        return text

def save_transcription(yt_url, transcription, title, duration, uploader, upload_date, description):
    data = {
        "url": yt_url,
        "transcription": transcription,
        "title": title,
        "duration": duration,
        "uploader": uploader,
        "upload_date": upload_date,
        "description": description,
        "datetime": datetime.now().isoformat()
    }

    # Load the existing dataset
    dataset = load_dataset(DATASET_NAME, split="train")
    
    # Convert to pandas dataframe
    df = dataset.to_pandas()
    
    # Append the new data
    df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)
    
    # Convert back to dataset
    updated_dataset = Dataset.from_pandas(df)
    
    # Push the updated dataset to the hub
    dataset_dict = DatasetDict({"train": updated_dataset})
    dataset_dict.push_to_hub(DATASET_NAME)

demo = gr.Blocks()

yt_transcribe_interface = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(
            lines=1,
            placeholder="Paste the URL to a YouTube video here",
            label="YouTube URL",
        ),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="Whisper Large V3: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
        f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface(
        [yt_transcribe_interface], ["YouTube"]
    )

demo.queue().launch()