Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import time | |
from datetime import datetime | |
from pathlib import Path | |
import tempfile | |
import pandas as pd | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import ( | |
BitsAndBytesConfig, | |
AutoModelForSpeechSeq2Seq, | |
AutoTokenizer, | |
AutoFeatureExtractor, | |
pipeline, | |
) | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import torch # If you're using PyTorch | |
from datasets import load_dataset, Dataset, DatasetDict | |
import spaces | |
# Constants | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes | |
DATASET_NAME = "dwb2023/yt-transcripts-v3" | |
# Environment setup | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
# Model setup | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
MODEL_NAME, | |
quantization_config=bnb_config, | |
use_cache=False, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
tokenizer=tokenizer, | |
feature_extractor=feature_extractor, | |
chunk_length_s=30, | |
) | |
def reset_and_update_dataset(new_data): | |
# Define the schema for an empty DataFrame | |
schema = { | |
"url": pd.Series(dtype="str"), | |
"transcription": pd.Series(dtype="str"), | |
"title": pd.Series(dtype="str"), | |
"duration": pd.Series(dtype="int"), | |
"uploader": pd.Series(dtype="str"), | |
"upload_date": pd.Series(dtype="datetime64[ns]"), | |
"description": pd.Series(dtype="str"), | |
"datetime": pd.Series(dtype="datetime64[ns]") | |
} | |
# Create an empty DataFrame with the defined schema | |
df = pd.DataFrame(schema) | |
# Append the new data | |
df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True) | |
# Convert back to dataset | |
updated_dataset = Dataset.from_pandas(df) | |
# Push the updated dataset to the hub | |
dataset_dict = DatasetDict({"train": updated_dataset}) | |
dataset_dict.push_to_hub(DATASET_NAME) | |
print("Dataset reset and updated successfully!") | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration"] | |
if file_length > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) | |
raise gr.Error( | |
f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video." | |
) | |
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([yt_url]) | |
return info | |
def yt_transcribe(yt_url, task): | |
# Load the dataset | |
dataset = load_dataset(DATASET_NAME, split="train") | |
# Check if the transcription already exists | |
for row in dataset: | |
if row['url'] == yt_url: | |
return row['transcription'] # Return the existing transcription | |
# If transcription does not exist, perform the transcription | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
info = download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
video_data = f.read() | |
inputs = ffmpeg_read(video_data, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe( | |
inputs, | |
batch_size=BATCH_SIZE, | |
generate_kwargs={"task": task}, | |
return_timestamps=True, | |
)["text"] | |
# Extract additional fields | |
try: | |
title = info.get("title", "N/A") | |
duration = info.get("duration", 0) | |
uploader = info.get("uploader", "N/A") | |
upload_date = info.get("upload_date", "N/A") | |
description = info.get("description", "N/A") | |
except KeyError: | |
title = "N/A" | |
duration = 0 | |
uploader = "N/A" | |
upload_date = "N/A" | |
description = "N/A" | |
save_transcription(yt_url, text, title, duration, uploader, upload_date, description) | |
return text | |
def save_transcription(yt_url, transcription, title, duration, uploader, upload_date, description): | |
data = { | |
"url": yt_url, | |
"transcription": transcription, | |
"title": title, | |
"duration": duration, | |
"uploader": uploader, | |
"upload_date": upload_date, | |
"description": description, | |
"datetime": datetime.now().isoformat() | |
} | |
# Load the existing dataset | |
dataset = load_dataset(DATASET_NAME, split="train") | |
# Convert to pandas dataframe | |
df = dataset.to_pandas() | |
# Append the new data | |
df = pd.concat([df, pd.DataFrame([data])], ignore_index=True) | |
# Convert back to dataset | |
updated_dataset = Dataset.from_pandas(df) | |
# Push the updated dataset to the hub | |
dataset_dict = DatasetDict({"train": updated_dataset}) | |
dataset_dict.push_to_hub(DATASET_NAME) | |
demo = gr.Blocks() | |
yt_transcribe_interface = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox( | |
lines=1, | |
placeholder="Paste the URL to a YouTube video here", | |
label="YouTube URL", | |
), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
" arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface( | |
[yt_transcribe_interface], ["YouTube"] | |
) | |
demo.queue().launch() | |