import gradio as gr import yt_dlp as youtube_dl from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read from huggingface_hub import CommitScheduler import tempfile import os import json from datetime import datetime from pathlib import Path from uuid import uuid4 MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 YT_LENGTH_LIMIT_S = 4800 # 1 hour limit device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device) JSON_DATASET_DIR = Path("json_dataset") JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) JSON_DATASET_PATH = JSON_DATASET_DIR / f"transcriptions-{uuid4()}.json" scheduler = CommitScheduler( repo_id="your-dataset-repo", repo_type="dataset", folder_path=JSON_DATASET_DIR, path_in_repo="data", ) def transcribe_audio(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text def download_yt_audio(yt_url, filename): info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration_string"] file_h_m_s = list(map(int, file_length.split(":"))) if len(file_h_m_s) == 1: file_h_m_s.insert(0, 0) if len(file_h_m_s) == 2: file_h_m_s.insert(0, 0) file_length_s = sum(x * 60 ** i for i, x in enumerate(reversed(file_h_m_s))) if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([yt_url]) def yt_transcribe(yt_url, task): with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: inputs = f.read() inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] save_transcription(yt_url, text) return text def save_transcription(yt_url, transcription): with scheduler.lock: with JSON_DATASET_PATH.open("a") as f: json.dump({"url": yt_url, "transcription": transcription, "datetime": datetime.now().isoformat()}, f) f.write("\n") demo = gr.Blocks() yt_transcribe_interface = gr.Interface( fn=yt_transcribe, inputs=[ gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") ], outputs="text", title="Whisper Large V3: Transcribe YouTube", description=( "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" " arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([yt_transcribe_interface], ["YouTube"]) demo.queue().launch()