import os import json import time from datetime import datetime from pathlib import Path import tempfile import pandas as pd import gradio as gr import yt_dlp as youtube_dl from transformers import ( BitsAndBytesConfig, AutoModelForSpeechSeq2Seq, AutoTokenizer, AutoFeatureExtractor, pipeline, ) from transformers.pipelines.audio_utils import ffmpeg_read import torch # If you're using PyTorch from datasets import load_dataset, Dataset, DatasetDict import spaces # Constants MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes DATASET_NAME = "dwb2023/yt-transcripts-v3" # Environment setup os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # Model setup bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForSpeechSeq2Seq.from_pretrained( MODEL_NAME, quantization_config=bnb_config, use_cache=False, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) pipe = pipeline( task="automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, chunk_length_s=30, ) def reset_and_update_dataset(new_data): # Define the schema for an empty DataFrame schema = { "url": pd.Series(dtype="str"), "transcription": pd.Series(dtype="str"), "title": pd.Series(dtype="str"), "duration": pd.Series(dtype="int"), "uploader": pd.Series(dtype="str"), "upload_date": pd.Series(dtype="datetime64[ns]"), "description": pd.Series(dtype="str"), "datetime": pd.Series(dtype="datetime64[ns]") } # Create an empty DataFrame with the defined schema df = pd.DataFrame(schema) # Append the new data df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True) # Convert back to dataset updated_dataset = Dataset.from_pandas(df) # Push the updated dataset to the hub dataset_dict = DatasetDict({"train": updated_dataset}) dataset_dict.push_to_hub(DATASET_NAME) print("Dataset reset and updated successfully!") def download_yt_audio(yt_url, filename): info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration"] if file_length > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) raise gr.Error( f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video." ) ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([yt_url]) return info @spaces.GPU(duration=120) def yt_transcribe(yt_url, task): # Load the dataset dataset = load_dataset(DATASET_NAME, split="train") # Check if the transcription already exists for row in dataset: if row['url'] == yt_url: return row['transcription'] # Return the existing transcription # If transcription does not exist, perform the transcription with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") info = download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: video_data = f.read() inputs = ffmpeg_read(video_data, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} text = pipe( inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True, )["text"] # Extract additional fields try: title = info.get("title", "N/A") duration = info.get("duration", 0) uploader = info.get("uploader", "N/A") upload_date = info.get("upload_date", "N/A") description = info.get("description", "N/A") except KeyError: title = "N/A" duration = 0 uploader = "N/A" upload_date = "N/A" description = "N/A" save_transcription(yt_url, text, title, duration, uploader, upload_date, description) return text def save_transcription(yt_url, transcription, title, duration, uploader, upload_date, description): data = { "url": yt_url, "transcription": transcription, "title": title, "duration": duration, "uploader": uploader, "upload_date": upload_date, "description": description, "datetime": datetime.now().isoformat() } # Load the existing dataset dataset = load_dataset(DATASET_NAME, split="train") # Convert to pandas dataframe df = dataset.to_pandas() # Append the new data df = pd.concat([df, pd.DataFrame([data])], ignore_index=True) # Convert back to dataset updated_dataset = Dataset.from_pandas(df) # Push the updated dataset to the hub dataset_dict = DatasetDict({"train": updated_dataset}) dataset_dict.push_to_hub(DATASET_NAME) demo = gr.Blocks() yt_transcribe_interface = gr.Interface( fn=yt_transcribe, inputs=[ gr.Textbox( lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", ), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", title="👂👁️👅👃✋ KnowledgeScribe 📝 🧠💡🎓🚀", description=( f"""**KnowledgeScribe** is your all-in-one transcription and summarization tool designed to extract and distill knowledge from various sources, including YouTube videos and Arxiv papers. \n\nCurrently leverages the following datasets and models: \n- [{DATASET_NAME}](https://huggingface.co/{DATASET_NAME})" \n- [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME})" """ ), allow_flagging="never", ) with demo: gr.TabbedInterface( [yt_transcribe_interface], ["YouTube"] ) demo.queue().launch()