Spaces:
Runtime error
Runtime error
File size: 5,671 Bytes
5dae26f 725ac0d 719c202 5dae26f 725ac0d a2e1737 725ac0d a2e1737 5dae26f 20f775b a2e1737 5dae26f a2e1737 5dae26f a2e1737 5dae26f a2e1737 5dae26f a2e1737 5dae26f a2e1737 5dae26f a2e1737 725ac0d a2e1737 5dae26f 725ac0d 5dae26f a2e1737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import re
import PIL.Image
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
import flax.linen as nn
from inference import PaliGemmaModel, VAEModel
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
# Instantiate the models
pali_gemma_model = PaliGemmaModel()
vae_model = VAEModel('vae-oid.npz')
##### Parse segmentation output tokens into masks
##### Also returns bounding boxes with their labels
def parse_segmentation(input_image, input_text, max_new_tokens=100):
out = pali_gemma_model.infer(image=input_image, text=input_text, max_new_tokens=max_new_tokens)
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
labels = set(obj.get('name') for obj in objs if obj.get('name'))
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
annotated_img = (
input_image,
[
(
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
obj['name'] or '',
)
for obj in objs
if 'mask' in obj or 'xyxy' in obj
],
)
has_annotations = bool(annotated_img[1])
return annotated_img
INTRO_TEXT="🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
IMAGE_PROMPT="""
Describe the morphological characteristics and visible interactions between different cell types.
Assess the biological context to identify signs of cancer and the presence of antigens.
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Segment/Detect"):
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
seg_input = gr.Text(label="Entities to Segment/Detect")
with gr.Column():
annotated_image = gr.AnnotatedImage(label="Output")
seg_btn = gr.Button("Submit")
examples = [
["./examples/cart1.jpg", "segment cells"],
["./examples/cart1.jpg", "detect cells"],
["./examples/cart2.jpg", "segment cells"],
["./examples/cart2.jpg", "detect cells"],
["./examples/cart3.jpg", "segment cells"],
["./examples/cart3.jpg", "detect cells"]
]
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input,
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=parse_segmentation,
inputs=seg_inputs,
outputs=seg_outputs,
)
with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(type="pil")
text_input = gr.Text(label="Input Text")
text_output = gr.Text(label="Text Output")
chat_btn = gr.Button()
tokens = gr.Slider(
label="Max New Tokens",
info="Set to larger for longer generation.",
minimum=10,
maximum=100,
value=50,
step=10,
)
chat_inputs = [
image,
text_input,
tokens
]
chat_outputs = [
text_output
]
chat_btn.click(
fn=pali_gemma_model.infer,
inputs=chat_inputs,
outputs=chat_outputs,
)
examples = [
["./examples/cart1.jpg", IMAGE_PROMPT],
["./examples/cart2.jpg", IMAGE_PROMPT],
["./examples/cart3.jpg", IMAGE_PROMPT]
]
gr.Examples(
examples=examples,
inputs=chat_inputs,
)
### Postprocessing Utils for Segmentation Tokens
### Segmentation tokens are passed to another VAE which decodes them to a mask
def extract_objs(text, width, height, unique_labels=False):
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
objs = []
seen = set()
while text:
m = _SEGMENT_DETECT_RE.match(text)
if not m:
break
print("m", m)
gs = list(m.groups())
before = gs.pop(0)
name = gs.pop()
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
seg_indices = gs[4:20]
if seg_indices[0] is None:
mask = None
else:
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
m64, = vae_model.reconstruct_masks(seg_indices[None])[..., 0]
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
mask = np.zeros([height, width])
if y2 > y1 and x2 > x1:
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
content = m.group()
if before:
objs.append(dict(content=before))
content = content[len(before):]
while unique_labels and name in seen:
name = (name or '') + "'"
seen.add(name)
objs.append(dict(
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
text = text[len(before) + len(content):]
if text:
objs.append(dict(content=text))
return objs
_SEGMENT_DETECT_RE = re.compile(
r'(.*?)' +
r'<loc(\d{4})>' * 4 + r'\s*' +
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
r'\s*([^;<>]+)? ?(?:; )?',
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)
|