Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import re
|
2 |
import PIL.Image
|
3 |
import gradio as gr
|
@@ -36,12 +37,62 @@ def parse_segmentation(input_image, input_text, max_new_tokens=100):
|
|
36 |
has_annotations = bool(annotated_img[1])
|
37 |
return annotated_img
|
38 |
|
39 |
-
INTRO_TEXT="🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
|
40 |
-
IMAGE_PROMPT="""
|
41 |
Describe the morphological characteristics and visible interactions between different cell types.
|
42 |
Assess the biological context to identify signs of cancer and the presence of antigens.
|
43 |
"""
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with gr.Blocks(css="style.css") as demo:
|
46 |
gr.Markdown(INTRO_TEXT)
|
47 |
with gr.Tab("Segment/Detect"):
|
@@ -117,58 +168,5 @@ with gr.Blocks(css="style.css") as demo:
|
|
117 |
inputs=chat_inputs,
|
118 |
)
|
119 |
|
120 |
-
### Postprocessing Utils for Segmentation Tokens
|
121 |
-
### Segmentation tokens are passed to another VAE which decodes them to a mask
|
122 |
-
|
123 |
-
def extract_objs(text, width, height, unique_labels=False):
|
124 |
-
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
|
125 |
-
objs = []
|
126 |
-
seen = set()
|
127 |
-
while text:
|
128 |
-
m = _SEGMENT_DETECT_RE.match(text)
|
129 |
-
if not m:
|
130 |
-
break
|
131 |
-
print("m", m)
|
132 |
-
gs = list(m.groups())
|
133 |
-
before = gs.pop(0)
|
134 |
-
name = gs.pop()
|
135 |
-
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
|
136 |
-
|
137 |
-
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
|
138 |
-
seg_indices = gs[4:20]
|
139 |
-
if seg_indices[0] is None:
|
140 |
-
mask = None
|
141 |
-
else:
|
142 |
-
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
|
143 |
-
m64, = vae_model.reconstruct_masks(seg_indices[None])[..., 0]
|
144 |
-
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
|
145 |
-
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
|
146 |
-
mask = np.zeros([height, width])
|
147 |
-
if y2 > y1 and x2 > x1:
|
148 |
-
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
|
149 |
-
|
150 |
-
content = m.group()
|
151 |
-
if before:
|
152 |
-
objs.append(dict(content=before))
|
153 |
-
content = content[len(before):]
|
154 |
-
while unique_labels and name in seen:
|
155 |
-
name = (name or '') + "'"
|
156 |
-
seen.add(name)
|
157 |
-
objs.append(dict(
|
158 |
-
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
|
159 |
-
text = text[len(before) + len(content):]
|
160 |
-
|
161 |
-
if text:
|
162 |
-
objs.append(dict(content=text))
|
163 |
-
|
164 |
-
return objs
|
165 |
-
|
166 |
-
_SEGMENT_DETECT_RE = re.compile(
|
167 |
-
r'(.*?)' +
|
168 |
-
r'<loc(\d{4})>' * 4 + r'\s*' +
|
169 |
-
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
|
170 |
-
r'\s*([^;<>]+)? ?(?:; )?',
|
171 |
-
)
|
172 |
-
|
173 |
if __name__ == "__main__":
|
174 |
demo.queue(max_size=10).launch(debug=True)
|
|
|
1 |
+
import functools
|
2 |
import re
|
3 |
import PIL.Image
|
4 |
import gradio as gr
|
|
|
37 |
has_annotations = bool(annotated_img[1])
|
38 |
return annotated_img
|
39 |
|
40 |
+
INTRO_TEXT = "🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
|
41 |
+
IMAGE_PROMPT = """
|
42 |
Describe the morphological characteristics and visible interactions between different cell types.
|
43 |
Assess the biological context to identify signs of cancer and the presence of antigens.
|
44 |
"""
|
45 |
|
46 |
+
def extract_objs(text, width, height, unique_labels=False):
|
47 |
+
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
|
48 |
+
objs = []
|
49 |
+
seen = set()
|
50 |
+
while text:
|
51 |
+
m = _SEGMENT_DETECT_RE.match(text)
|
52 |
+
if not m:
|
53 |
+
break
|
54 |
+
print("m", m)
|
55 |
+
gs = list(m.groups())
|
56 |
+
before = gs.pop(0)
|
57 |
+
name = gs.pop()
|
58 |
+
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
|
59 |
+
|
60 |
+
y1, x1, y2, x2 = map(round, (y1 * height, x1 * width, y2 * height, x2 * width))
|
61 |
+
seg_indices = gs[4:20]
|
62 |
+
if seg_indices[0] is None:
|
63 |
+
mask = None
|
64 |
+
else:
|
65 |
+
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
|
66 |
+
m64, = vae_model.reconstruct_masks(seg_indices[None])[..., 0]
|
67 |
+
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
|
68 |
+
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
|
69 |
+
mask = np.zeros([height, width])
|
70 |
+
if y2 > y1 and x2 > x1:
|
71 |
+
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
|
72 |
+
|
73 |
+
content = m.group()
|
74 |
+
if before:
|
75 |
+
objs.append(dict(content=before))
|
76 |
+
content = content[len(before):]
|
77 |
+
while unique_labels and name in seen:
|
78 |
+
name = (name or '') + "'"
|
79 |
+
seen.add(name)
|
80 |
+
objs.append(dict(
|
81 |
+
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
|
82 |
+
text = text[len(before) + len(content):]
|
83 |
+
|
84 |
+
if text:
|
85 |
+
objs.append(dict(content=text))
|
86 |
+
|
87 |
+
return objs
|
88 |
+
|
89 |
+
_SEGMENT_DETECT_RE = re.compile(
|
90 |
+
r'(.*?)' +
|
91 |
+
r'<loc(\d{4})>' * 4 + r'\s*' +
|
92 |
+
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
|
93 |
+
r'\s*([^;<>]+)? ?(?:; )?',
|
94 |
+
)
|
95 |
+
|
96 |
with gr.Blocks(css="style.css") as demo:
|
97 |
gr.Markdown(INTRO_TEXT)
|
98 |
with gr.Tab("Segment/Detect"):
|
|
|
168 |
inputs=chat_inputs,
|
169 |
)
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
if __name__ == "__main__":
|
172 |
demo.queue(max_size=10).launch(debug=True)
|