from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("bartowski/Qwen2.5-Coder-32B-Instruct-abliterated-GGUF") model = AutoModelForCausalLM.from_pretrained( "bartowski/Qwen2.5-Coder-32B-Instruct-abliterated-GGUF", device_map="auto", torch_dtype="auto", resume_download=True # Enable resumable downloads ) # Define a function for generating text def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=200) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create a Gradio interface interface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Qwen 2.5 Coder 32B Text Generator", description="Enter a prompt to generate text using the Qwen2.5-Coder-32B-Instruct-abliterated-GGUF model." ) # Launch the interface if __name__ == "__main__": interface.launch()