Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the model using Hugging Face pipeline
|
7 |
+
MODEL_NAME = "dwililiya/sugarcane-plant-diseases-classification"
|
8 |
+
classifier = pipeline("image-classification", model=MODEL_NAME)
|
9 |
+
|
10 |
+
# Define class names based on your dataset
|
11 |
+
class_names = ['Bacterial Blight', 'Healthy', 'Mosaic', 'Red Rot', 'Rust', 'Yellow']
|
12 |
+
|
13 |
+
def predict(image):
|
14 |
+
# Use the classifier to predict
|
15 |
+
predictions = classifier(image)
|
16 |
+
|
17 |
+
# Get the predicted class and confidence score
|
18 |
+
predicted_class = predictions[0]['label']
|
19 |
+
confidence = predictions[0]['score']
|
20 |
+
|
21 |
+
return predicted_class, confidence
|
22 |
+
|
23 |
+
# Gradio interface
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=predict,
|
26 |
+
inputs=gr.inputs.Image(type="file", label="Upload Sugarcane Leaf Image"),
|
27 |
+
outputs=[gr.outputs.Label(num_top_classes=1, label="Predicted Class"),
|
28 |
+
gr.outputs.Textbox(label="Confidence Score")],
|
29 |
+
title="Sugarcane Plant Diseases Classification",
|
30 |
+
description="Upload an image of a sugarcane leaf to classify its disease.",
|
31 |
+
)
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
iface.launch()
|