File size: 5,551 Bytes
9fab08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from utils.logger import get_logger
import numpy as np
from rapidfuzz.distance.Levenshtein import normalized_distance
import multiprocessing
import time
import utils.alignment as alignment

def _get_mned_metric_from_TruePredict(true_text, predict_text):
    return normalized_distance(predict_text, true_text)

def get_mned_metric_from_TruePredict(batch_true_text, batch_predict_text): 
    total_NMED = 0.0
    count = 0
    for true_text, predict_text in zip(batch_true_text, batch_predict_text):
        total_NMED += _get_mned_metric_from_TruePredict(true_text, predict_text)
        count += 1
    return total_NMED / count

def get_metric_for_tfm(batch_predicts, batch_targets, batch_length):
    num_correct, num_wrong = 0, 0
    for predict, target, length in zip(batch_predicts, batch_targets, batch_length):
        predict = predict[1:-1]
        target = target[1:-1]
        predict = np.array(predict[0:length])
        target = np.array(target[0:length])
        num_correct += np.sum(predict == target)
        num_wrong += np.sum(predict != target)
    return num_correct, num_wrong


def allign_seq2trueseq(seq, true_seq, gap_symbol = "-"):
    prev_sep = None
    next_sep = None
    seq_list = []
    true_list = []
    accumulate_true_word = ""
    accumulate_pred_word = ""
    assert len(true_seq) == len(seq)
    for i in range(len(true_seq)):
        if true_seq[i] != " ":
            accumulate_true_word += true_seq[i]
            accumulate_pred_word += seq[i]
        else:
            if seq[i] == gap_symbol:
                next_sep = gap_symbol
                if prev_sep != None and prev_sep == gap_symbol:
                    accumulate_pred_word = "@@" + accumulate_pred_word
                if next_sep != None and next_sep == gap_symbol:
                    accumulate_pred_word = accumulate_pred_word + "@@"
            else:
                next_sep = " "
                if prev_sep != None and prev_sep == gap_symbol:
                    accumulate_pred_word = "@@" + accumulate_pred_word
                if next_sep != None and next_sep == gap_symbol:
                    accumulate_pred_word = accumulate_pred_word + "@@"
            true_list.append(accumulate_true_word.replace(gap_symbol, ""))
            seq_list.append(accumulate_pred_word)
            accumulate_pred_word = ""
            accumulate_true_word = ""
            prev_sep = next_sep
            next_sep = None   
    return seq_list, true_list

def align_2seq2trueseq(wrong_text, pred_text, true_text, gap_symbol = "-"):
    assert gap_symbol != None and len(gap_symbol) == 1
    seq1, true_seq = alignment.needle(wrong_text, true_text, gap_symbol)
    seq1_list, true_list = allign_seq2trueseq(seq1, true_seq, gap_symbol)
    seq2, true_seq = alignment.needle(pred_text, true_text, gap_symbol)
    seq2_list, _ = allign_seq2trueseq(seq2, true_seq, gap_symbol)
    return list(zip(seq1_list, seq2_list, true_list))

def _get_metric_from_TrueWrongPredictV3(true_text, wrong_text, predict_text, vocab = None):
    gap_symbol = None
    if vocab != None:
        all_symbols = set(list(vocab.chartoken2idx.keys())[4:])
        symbols = set(list(wrong_text + predict_text + true_text))
        usable_symbols = all_symbols.difference(symbols)
        assert len(usable_symbols) > 0
        if "-" not in usable_symbols:
            gap_symbol = usable_symbols.pop()
        else:
            gap_symbol = "-"
    gap_symbol = gap_symbol if gap_symbol != None else "-"

    alignment = align_2seq2trueseq(wrong_text, predict_text, true_text, gap_symbol)
    TP, FP, FN = 0, 0, 0
    for wrong, predict, true in alignment:
        if wrong == true:
            if predict[:-2] == true:
                pass
            elif predict != true:
                if len(predict.split(" ")) == len(true.split(" ")):
                    FP += 1
                else:
                    penalty = len(predict.split(" ")) - len(true.split(" "))
                    assert penalty > 0
                    FP += penalty
        else:
            if predict == true:
                TP += 1
            else:
                if len(predict.split(" ")) == len(true.split(" ")):
                    FN += 1
                else:
                    penalty = len(predict.split(" ")) - len(true.split(" "))
                    assert penalty > 0
                    FN += penalty

    return TP, FP, FN 

def worker_task(true_text, wrong_text, predict_text, vocab):
    _TP, _FP, _FN = _get_metric_from_TrueWrongPredictV3(true_text, wrong_text, predict_text, vocab)
    return (_TP, _FP, _FN)

from multiprocessing import Pool
def get_metric_from_TrueWrongPredictV3(batch_true_text, batch_wrong_text, batch_predict_text, vocab, twp_logger):
    assert vocab != None
    TPs, FPs, FNs = 0, 0, 0
    with Pool(int(multiprocessing.cpu_count() / 3)) as pool:
        data = [(true_text, wrong_text, pred_text, vocab) for true_text, wrong_text, pred_text in zip(batch_true_text, batch_wrong_text, batch_predict_text)]
        result = pool.starmap_async(worker_task, data)
        for i, result in enumerate(result.get()):
            TPs += result[0]
            FPs += result[1]
            FNs += result[2]
            if twp_logger:
                twp_logger.log(batch_true_text[i], file_only=True)
                twp_logger.log(batch_wrong_text[i], file_only=True)
                twp_logger.log(batch_predict_text[i], file_only=True)
                twp_logger.log(f"{result[0]} - {result[1]} - {result[2]}", file_only=True)
    return TPs, FPs, FNs