Spaces:
Starting
on
A10G
Starting
on
A10G
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import roma | |
from kiui.op import safe_normalize | |
def get_rays(pose, h, w, fovy, opengl=True): | |
x, y = torch.meshgrid( | |
torch.arange(w, device=pose.device), | |
torch.arange(h, device=pose.device), | |
indexing="xy", | |
) | |
x = x.flatten() | |
y = y.flatten() | |
cx = w * 0.5 | |
cy = h * 0.5 | |
focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy)) | |
camera_dirs = F.pad( | |
torch.stack( | |
[ | |
(x - cx + 0.5) / focal, | |
(y - cy + 0.5) / focal * (-1.0 if opengl else 1.0), | |
], | |
dim=-1, | |
), | |
(0, 1), | |
value=(-1.0 if opengl else 1.0), | |
) # [hw, 3] | |
rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1) # [hw, 3] | |
rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) # [hw, 3] | |
rays_o = rays_o.view(h, w, 3) | |
rays_d = safe_normalize(rays_d).view(h, w, 3) | |
return rays_o, rays_d | |
def orbit_camera_jitter(poses, strength=0.1): | |
# poses: [B, 4, 4], assume orbit camera in opengl format | |
# random orbital rotate | |
B = poses.shape[0] | |
rotvec_x = poses[:, :3, 1] * strength * np.pi * (torch.rand(B, 1, device=poses.device) * 2 - 1) | |
rotvec_y = poses[:, :3, 0] * strength * np.pi / 2 * (torch.rand(B, 1, device=poses.device) * 2 - 1) | |
rot = roma.rotvec_to_rotmat(rotvec_x) @ roma.rotvec_to_rotmat(rotvec_y) | |
R = rot @ poses[:, :3, :3] | |
T = rot @ poses[:, :3, 3:] | |
new_poses = poses.clone() | |
new_poses[:, :3, :3] = R | |
new_poses[:, :3, 3:] = T | |
return new_poses | |
def grid_distortion(images, strength=0.5): | |
# images: [B, C, H, W] | |
# num_steps: int, grid resolution for distortion | |
# strength: float in [0, 1], strength of distortion | |
B, C, H, W = images.shape | |
num_steps = np.random.randint(8, 17) | |
grid_steps = torch.linspace(-1, 1, num_steps) | |
# have to loop batch... | |
grids = [] | |
for b in range(B): | |
# construct displacement | |
x_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive | |
x_steps = (x_steps + strength * (torch.rand_like(x_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb | |
x_steps = (x_steps * W).long() # [num_steps] | |
x_steps[0] = 0 | |
x_steps[-1] = W | |
xs = [] | |
for i in range(num_steps - 1): | |
xs.append(torch.linspace(grid_steps[i], grid_steps[i + 1], x_steps[i + 1] - x_steps[i])) | |
xs = torch.cat(xs, dim=0) # [W] | |
y_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive | |
y_steps = (y_steps + strength * (torch.rand_like(y_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb | |
y_steps = (y_steps * H).long() # [num_steps] | |
y_steps[0] = 0 | |
y_steps[-1] = H | |
ys = [] | |
for i in range(num_steps - 1): | |
ys.append(torch.linspace(grid_steps[i], grid_steps[i + 1], y_steps[i + 1] - y_steps[i])) | |
ys = torch.cat(ys, dim=0) # [H] | |
# construct grid | |
grid_x, grid_y = torch.meshgrid(xs, ys, indexing='xy') # [H, W] | |
grid = torch.stack([grid_x, grid_y], dim=-1) # [H, W, 2] | |
grids.append(grid) | |
grids = torch.stack(grids, dim=0).to(images.device) # [B, H, W, 2] | |
# grid sample | |
images = F.grid_sample(images, grids, align_corners=False) | |
return images | |