Spaces:
Sleeping
Sleeping
import tyro | |
from dataclasses import dataclass | |
from typing import Tuple, Literal, Dict, Optional | |
class Options: | |
### model | |
# Unet image input size | |
input_size: int = 256 | |
# Unet definition | |
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024) | |
down_attention: Tuple[bool, ...] = (False, False, False, True, True, True) | |
mid_attention: bool = True | |
up_channels: Tuple[int, ...] = (1024, 1024, 512, 256) | |
up_attention: Tuple[bool, ...] = (True, True, True, False) | |
# Unet output size, dependent on the input_size and U-Net structure! | |
splat_size: int = 64 | |
# gaussian render size | |
output_size: int = 256 | |
### dataset | |
# data mode (only support s3 now) | |
data_mode: Literal['s3'] = 's3' | |
# fovy of the dataset | |
fovy: float = 49.1 | |
# camera near plane | |
znear: float = 0.5 | |
# camera far plane | |
zfar: float = 2.5 | |
# number of all views (input + output) | |
num_views: int = 12 | |
# number of views | |
num_input_views: int = 4 | |
# camera radius | |
cam_radius: float = 1.5 # to better use [-1, 1]^3 space | |
# num workers | |
num_workers: int = 8 | |
### training | |
# workspace | |
workspace: str = './workspace' | |
# resume | |
resume: Optional[str] = None | |
# batch size (per-GPU) | |
batch_size: int = 8 | |
# gradient accumulation | |
gradient_accumulation_steps: int = 1 | |
# training epochs | |
num_epochs: int = 30 | |
# lpips loss weight | |
lambda_lpips: float = 1.0 | |
# gradient clip | |
gradient_clip: float = 1.0 | |
# mixed precision | |
mixed_precision: str = 'bf16' | |
# learning rate | |
lr: float = 4e-4 | |
# augmentation prob for grid distortion | |
prob_grid_distortion: float = 0.5 | |
# augmentation prob for camera jitter | |
prob_cam_jitter: float = 0.5 | |
### testing | |
# test image path | |
test_path: Optional[str] = None | |
### misc | |
# nvdiffrast backend setting | |
force_cuda_rast: bool = False | |
# render fancy video with gaussian scaling effect | |
fancy_video: bool = False | |
# all the default settings | |
config_defaults: Dict[str, Options] = {} | |
config_doc: Dict[str, str] = {} | |
config_doc['lrm'] = 'the default settings for LGM' | |
config_defaults['lrm'] = Options() | |
config_doc['small'] = 'small model with lower resolution Gaussians' | |
config_defaults['small'] = Options( | |
input_size=256, | |
splat_size=64, | |
output_size=256, | |
batch_size=8, | |
gradient_accumulation_steps=1, | |
mixed_precision='bf16', | |
) | |
config_doc['big'] = 'big model with higher resolution Gaussians' | |
config_defaults['big'] = Options( | |
input_size=256, | |
up_channels=(1024, 1024, 512, 256, 128), # one more decoder | |
up_attention=(True, True, True, False, False), | |
splat_size=128, | |
output_size=512, # render & supervise Gaussians at a higher resolution. | |
batch_size=8, | |
num_views=8, | |
gradient_accumulation_steps=1, | |
mixed_precision='bf16', | |
) | |
config_doc['tiny'] = 'tiny model for ablation' | |
config_defaults['tiny'] = Options( | |
input_size=256, | |
down_channels=(32, 64, 128, 256, 512), | |
down_attention=(False, False, False, False, True), | |
up_channels=(512, 256, 128), | |
up_attention=(True, False, False, False), | |
splat_size=64, | |
output_size=256, | |
batch_size=16, | |
num_views=8, | |
gradient_accumulation_steps=1, | |
mixed_precision='bf16', | |
) | |
AllConfigs = tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc) | |