Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import yt_dlp as youtube_dl
|
5 |
from transformers import pipeline
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
7 |
-
|
8 |
import tempfile
|
9 |
import os
|
|
|
10 |
|
11 |
MODEL_NAME = "openai/whisper-large-v3"
|
12 |
BATCH_SIZE = 8
|
@@ -22,14 +21,12 @@ pipe = pipeline(
|
|
22 |
device=device,
|
23 |
)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
if inputs is None:
|
28 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
29 |
|
30 |
-
text = pipe(
|
31 |
-
return
|
32 |
-
|
33 |
|
34 |
def _return_yt_html_embed(yt_url):
|
35 |
video_id = yt_url.split("?v=")[-1]
|
@@ -70,7 +67,6 @@ def download_yt_audio(yt_url, filename):
|
|
70 |
except youtube_dl.utils.ExtractorError as err:
|
71 |
raise gr.Error(str(err))
|
72 |
|
73 |
-
|
74 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
75 |
html_embed_str = _return_yt_html_embed(yt_url)
|
76 |
|
@@ -87,65 +83,40 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
87 |
|
88 |
return html_embed_str, text
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
fn=transcribe,
|
95 |
-
inputs=[
|
96 |
-
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
97 |
-
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
98 |
-
],
|
99 |
-
outputs="text",
|
100 |
-
layout="horizontal",
|
101 |
-
theme="huggingface",
|
102 |
-
title="Whisper Large V3: Transcribe Audio",
|
103 |
-
description=(
|
104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
105 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
" of arbitrary length."
|
107 |
-
)
|
108 |
-
allow_flagging="never",
|
109 |
-
)
|
110 |
-
|
111 |
-
file_transcribe = gr.Interface(
|
112 |
-
fn=transcribe,
|
113 |
-
inputs=[
|
114 |
-
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
115 |
-
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
116 |
-
],
|
117 |
-
outputs="text",
|
118 |
-
layout="horizontal",
|
119 |
-
theme="huggingface",
|
120 |
-
title="Whisper Large V3: Transcribe Audio",
|
121 |
-
description=(
|
122 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
123 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
124 |
-
" of arbitrary length."
|
125 |
-
),
|
126 |
-
allow_flagging="never",
|
127 |
-
)
|
128 |
-
|
129 |
-
yt_transcribe = gr.Interface(
|
130 |
-
fn=yt_transcribe,
|
131 |
-
inputs=[
|
132 |
-
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
133 |
-
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
134 |
-
],
|
135 |
-
outputs=["html", "text"],
|
136 |
-
layout="horizontal",
|
137 |
-
theme="huggingface",
|
138 |
-
title="Whisper Large V3: Transcribe YouTube",
|
139 |
-
description=(
|
140 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
|
141 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
142 |
-
" arbitrary length."
|
143 |
-
),
|
144 |
-
allow_flagging="never",
|
145 |
-
)
|
146 |
-
|
147 |
-
with demo:
|
148 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
149 |
-
|
150 |
-
demo.launch(enable_queue=True)
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
2 |
import gradio as gr
|
3 |
import yt_dlp as youtube_dl
|
4 |
from transformers import pipeline
|
5 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
6 |
import tempfile
|
7 |
import os
|
8 |
+
import time
|
9 |
|
10 |
MODEL_NAME = "openai/whisper-large-v3"
|
11 |
BATCH_SIZE = 8
|
|
|
21 |
device=device,
|
22 |
)
|
23 |
|
24 |
+
def transcribe(audio, task):
|
25 |
+
if audio is None:
|
|
|
26 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
27 |
|
28 |
+
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
29 |
+
return text
|
|
|
30 |
|
31 |
def _return_yt_html_embed(yt_url):
|
32 |
video_id = yt_url.split("?v=")[-1]
|
|
|
67 |
except youtube_dl.utils.ExtractorError as err:
|
68 |
raise gr.Error(str(err))
|
69 |
|
|
|
70 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
71 |
html_embed_str = _return_yt_html_embed(yt_url)
|
72 |
|
|
|
83 |
|
84 |
return html_embed_str, text
|
85 |
|
86 |
+
with gr.Blocks(theme="huggingface") as demo:
|
87 |
+
gr.Markdown("# Whisper Large V3: Transcribe Audio")
|
88 |
+
gr.Markdown(
|
89 |
+
"Transcribe long-form audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
91 |
" of arbitrary length."
|
92 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
with gr.Tabs():
|
95 |
+
with gr.TabItem("Microphone"):
|
96 |
+
with gr.Row():
|
97 |
+
mic_input = gr.Audio(source="microphone", type="filepath", label="Microphone Input")
|
98 |
+
mic_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
99 |
+
mic_output = gr.Textbox(label="Transcription")
|
100 |
+
mic_button = gr.Button("Transcribe")
|
101 |
+
|
102 |
+
with gr.TabItem("Audio file"):
|
103 |
+
with gr.Row():
|
104 |
+
file_input = gr.Audio(source="upload", type="filepath", label="Audio file")
|
105 |
+
file_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
106 |
+
file_output = gr.Textbox(label="Transcription")
|
107 |
+
file_button = gr.Button("Transcribe")
|
108 |
+
|
109 |
+
with gr.TabItem("YouTube"):
|
110 |
+
with gr.Row():
|
111 |
+
yt_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
112 |
+
yt_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
113 |
+
yt_embed = gr.HTML(label="Video")
|
114 |
+
yt_output = gr.Textbox(label="Transcription")
|
115 |
+
yt_button = gr.Button("Transcribe")
|
116 |
+
|
117 |
+
mic_button.click(transcribe, inputs=[mic_input, mic_task], outputs=mic_output)
|
118 |
+
file_button.click(transcribe, inputs=[file_input, file_task], outputs=file_output)
|
119 |
+
yt_button.click(yt_transcribe, inputs=[yt_input, yt_task], outputs=[yt_embed, yt_output])
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
demo.launch(enable_queue=True)
|