sanjeevbora commited on
Commit
5fee1a1
·
verified ·
1 Parent(s): 01e522b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -68
app.py CHANGED
@@ -1,12 +1,11 @@
1
  import torch
2
-
3
  import gradio as gr
4
  import yt_dlp as youtube_dl
5
  from transformers import pipeline
6
  from transformers.pipelines.audio_utils import ffmpeg_read
7
-
8
  import tempfile
9
  import os
 
10
 
11
  MODEL_NAME = "openai/whisper-large-v3"
12
  BATCH_SIZE = 8
@@ -22,14 +21,12 @@ pipe = pipeline(
22
  device=device,
23
  )
24
 
25
-
26
- def transcribe(inputs, task):
27
- if inputs is None:
28
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
29
 
30
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
31
- return text
32
-
33
 
34
  def _return_yt_html_embed(yt_url):
35
  video_id = yt_url.split("?v=")[-1]
@@ -70,7 +67,6 @@ def download_yt_audio(yt_url, filename):
70
  except youtube_dl.utils.ExtractorError as err:
71
  raise gr.Error(str(err))
72
 
73
-
74
  def yt_transcribe(yt_url, task, max_filesize=75.0):
75
  html_embed_str = _return_yt_html_embed(yt_url)
76
 
@@ -87,65 +83,40 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
87
 
88
  return html_embed_str, text
89
 
90
-
91
- demo = gr.Blocks()
92
-
93
- mf_transcribe = gr.Interface(
94
- fn=transcribe,
95
- inputs=[
96
- gr.inputs.Audio(source="microphone", type="filepath", optional=True),
97
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
98
- ],
99
- outputs="text",
100
- layout="horizontal",
101
- theme="huggingface",
102
- title="Whisper Large V3: Transcribe Audio",
103
- description=(
104
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
105
  f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
106
  " of arbitrary length."
107
- ),
108
- allow_flagging="never",
109
- )
110
-
111
- file_transcribe = gr.Interface(
112
- fn=transcribe,
113
- inputs=[
114
- gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
115
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
116
- ],
117
- outputs="text",
118
- layout="horizontal",
119
- theme="huggingface",
120
- title="Whisper Large V3: Transcribe Audio",
121
- description=(
122
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
123
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
124
- " of arbitrary length."
125
- ),
126
- allow_flagging="never",
127
- )
128
-
129
- yt_transcribe = gr.Interface(
130
- fn=yt_transcribe,
131
- inputs=[
132
- gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
133
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
134
- ],
135
- outputs=["html", "text"],
136
- layout="horizontal",
137
- theme="huggingface",
138
- title="Whisper Large V3: Transcribe YouTube",
139
- description=(
140
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
141
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
142
- " arbitrary length."
143
- ),
144
- allow_flagging="never",
145
- )
146
-
147
- with demo:
148
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
149
-
150
- demo.launch(enable_queue=True)
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
 
2
  import gradio as gr
3
  import yt_dlp as youtube_dl
4
  from transformers import pipeline
5
  from transformers.pipelines.audio_utils import ffmpeg_read
 
6
  import tempfile
7
  import os
8
+ import time
9
 
10
  MODEL_NAME = "openai/whisper-large-v3"
11
  BATCH_SIZE = 8
 
21
  device=device,
22
  )
23
 
24
+ def transcribe(audio, task):
25
+ if audio is None:
 
26
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
27
 
28
+ text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
29
+ return text
 
30
 
31
  def _return_yt_html_embed(yt_url):
32
  video_id = yt_url.split("?v=")[-1]
 
67
  except youtube_dl.utils.ExtractorError as err:
68
  raise gr.Error(str(err))
69
 
 
70
  def yt_transcribe(yt_url, task, max_filesize=75.0):
71
  html_embed_str = _return_yt_html_embed(yt_url)
72
 
 
83
 
84
  return html_embed_str, text
85
 
86
+ with gr.Blocks(theme="huggingface") as demo:
87
+ gr.Markdown("# Whisper Large V3: Transcribe Audio")
88
+ gr.Markdown(
89
+ "Transcribe long-form audio inputs with the click of a button! Demo uses the OpenAI Whisper"
 
 
 
 
 
 
 
 
 
 
 
90
  f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
91
  " of arbitrary length."
92
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ with gr.Tabs():
95
+ with gr.TabItem("Microphone"):
96
+ with gr.Row():
97
+ mic_input = gr.Audio(source="microphone", type="filepath", label="Microphone Input")
98
+ mic_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
99
+ mic_output = gr.Textbox(label="Transcription")
100
+ mic_button = gr.Button("Transcribe")
101
+
102
+ with gr.TabItem("Audio file"):
103
+ with gr.Row():
104
+ file_input = gr.Audio(source="upload", type="filepath", label="Audio file")
105
+ file_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
106
+ file_output = gr.Textbox(label="Transcription")
107
+ file_button = gr.Button("Transcribe")
108
+
109
+ with gr.TabItem("YouTube"):
110
+ with gr.Row():
111
+ yt_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
112
+ yt_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
113
+ yt_embed = gr.HTML(label="Video")
114
+ yt_output = gr.Textbox(label="Transcription")
115
+ yt_button = gr.Button("Transcribe")
116
+
117
+ mic_button.click(transcribe, inputs=[mic_input, mic_task], outputs=mic_output)
118
+ file_button.click(transcribe, inputs=[file_input, file_task], outputs=file_output)
119
+ yt_button.click(yt_transcribe, inputs=[yt_input, yt_task], outputs=[yt_embed, yt_output])
120
+
121
+ if __name__ == "__main__":
122
+ demo.launch(enable_queue=True)