import torch import gradio as gr import yt_dlp as youtube_dl from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import tempfile import os import time MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(audio, task): if audio is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def download_yt_audio(yt_url, filename): info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration_string"] file_h_m_s = file_length.split(":") file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] if len(file_h_m_s) == 1: file_h_m_s.insert(0, 0) if len(file_h_m_s) == 2: file_h_m_s.insert(0, 0) file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except youtube_dl.utils.ExtractorError as err: raise gr.Error(str(err)) def yt_transcribe(yt_url, task, max_filesize=75.0): html_embed_str = _return_yt_html_embed(yt_url) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: inputs = f.read() inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return html_embed_str, text with gr.Blocks(theme="huggingface") as demo: gr.Markdown("# Whisper Large V3: Transcribe Audio") gr.Markdown( "Transcribe long-form audio inputs with the click of a button! Demo uses the OpenAI Whisper" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ) with gr.Tabs(): with gr.TabItem("Microphone"): with gr.Row(): mic_input = gr.Audio(type="filepath", label="Microphone Input") # mic_input = gr.Audio(source="microphone", type="filepath", label="Microphone Input") mic_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") mic_output = gr.Textbox(label="Transcription") mic_button = gr.Button("Transcribe") with gr.TabItem("Audio file"): with gr.Row(): file_input = gr.Audio(type="filepath", label="Audio file") # file_input = gr.Audio(source="upload", type="filepath", label="Audio file") file_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") file_output = gr.Textbox(label="Transcription") file_button = gr.Button("Transcribe") with gr.TabItem("YouTube"): with gr.Row(): yt_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL") yt_task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") yt_embed = gr.HTML(label="Video") yt_output = gr.Textbox(label="Transcription") yt_button = gr.Button("Transcribe") mic_button.click(transcribe, inputs=[mic_input, mic_task], outputs=mic_output) file_button.click(transcribe, inputs=[file_input, file_task], outputs=file_output) yt_button.click(yt_transcribe, inputs=[yt_input, yt_task], outputs=[yt_embed, yt_output]) if __name__ == "__main__": demo.launch(enable_queue=True)