Spaces:
Running
Running
import io | |
import matplotlib.pyplot as plt | |
import requests | |
import inflect | |
from PIL import Image | |
def load_image_from_url(url): | |
return Image.open(requests.get(url, stream=True).raw) | |
def render_results_in_image(in_pil_img, in_results): | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(in_pil_img) | |
ax = plt.gca() | |
for prediction in in_results: | |
x, y = prediction['box']['xmin'], prediction['box']['ymin'] | |
w = prediction['box']['xmax'] - prediction['box']['xmin'] | |
h = prediction['box']['ymax'] - prediction['box']['ymin'] | |
ax.add_patch(plt.Rectangle((x, y), | |
w, | |
h, | |
fill=False, | |
color="green", | |
linewidth=2)) | |
ax.text( | |
x, | |
y, | |
f"{prediction['label']}: {round(prediction['score']*100, 1)}%", | |
color='red' | |
) | |
plt.axis("off") | |
# Save the modified image to a BytesIO object | |
img_buf = io.BytesIO() | |
plt.savefig(img_buf, format='png', | |
bbox_inches='tight', | |
pad_inches=0) | |
img_buf.seek(0) | |
modified_image = Image.open(img_buf) | |
# Close the plot to prevent it from being displayed | |
plt.close() | |
return modified_image | |
def summarize_predictions_natural_language(predictions): | |
summary = {} | |
p = inflect.engine() | |
for prediction in predictions: | |
label = prediction['label'] | |
if label in summary: | |
summary[label] += 1 | |
else: | |
summary[label] = 1 | |
result_string = "In this image, there are " | |
for i, (label, count) in enumerate(summary.items()): | |
count_string = p.number_to_words(count) | |
result_string += f"{count_string} {label}" | |
if count > 1: | |
result_string += "s" | |
result_string += " " | |
if i == len(summary) - 2: | |
result_string += "and " | |
# Remove the trailing comma and space | |
result_string = result_string.rstrip(', ') + "." | |
return result_string | |
##### To ignore warnings ##### | |
import warnings | |
import logging | |
from transformers import logging as hf_logging | |
def ignore_warnings(): | |
# Ignore specific Python warnings | |
warnings.filterwarnings("ignore", message="Some weights of the model checkpoint") | |
warnings.filterwarnings("ignore", message="Could not find image processor class") | |
warnings.filterwarnings("ignore", message="The `max_size` parameter is deprecated") | |
# Adjust logging for libraries using the logging module | |
logging.basicConfig(level=logging.ERROR) | |
hf_logging.set_verbosity_error() | |
######## | |
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
def show_mask(mask, ax, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), | |
np.array([0.6])], | |
axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.imshow(mask_image) | |
def show_box(box, ax): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), | |
w, | |
h, edgecolor='green', | |
facecolor=(0,0,0,0), | |
lw=2)) | |
def show_boxes_on_image(raw_image, boxes): | |
plt.figure(figsize=(10,10)) | |
plt.imshow(raw_image) | |
for box in boxes: | |
show_box(box, plt.gca()) | |
plt.axis('on') | |
plt.show() | |
def show_points_on_image(raw_image, input_points, input_labels=None): | |
plt.figure(figsize=(10,10)) | |
plt.imshow(raw_image) | |
input_points = np.array(input_points) | |
if input_labels is None: | |
labels = np.ones_like(input_points[:, 0]) | |
else: | |
labels = np.array(input_labels) | |
show_points(input_points, labels, plt.gca()) | |
plt.axis('on') | |
plt.show() | |
def show_points_and_boxes_on_image(raw_image, | |
boxes, | |
input_points, | |
input_labels=None): | |
plt.figure(figsize=(10,10)) | |
plt.imshow(raw_image) | |
input_points = np.array(input_points) | |
if input_labels is None: | |
labels = np.ones_like(input_points[:, 0]) | |
else: | |
labels = np.array(input_labels) | |
show_points(input_points, labels, plt.gca()) | |
for box in boxes: | |
show_box(box, plt.gca()) | |
plt.axis('on') | |
plt.show() | |
def show_points_and_boxes_on_image(raw_image, | |
boxes, | |
input_points, | |
input_labels=None): | |
plt.figure(figsize=(10,10)) | |
plt.imshow(raw_image) | |
input_points = np.array(input_points) | |
if input_labels is None: | |
labels = np.ones_like(input_points[:, 0]) | |
else: | |
labels = np.array(input_labels) | |
show_points(input_points, labels, plt.gca()) | |
for box in boxes: | |
show_box(box, plt.gca()) | |
plt.axis('on') | |
plt.show() | |
def show_points(coords, labels, ax, marker_size=375): | |
pos_points = coords[labels==1] | |
neg_points = coords[labels==0] | |
ax.scatter(pos_points[:, 0], | |
pos_points[:, 1], | |
color='green', | |
marker='*', | |
s=marker_size, | |
edgecolor='white', | |
linewidth=1.25) | |
ax.scatter(neg_points[:, 0], | |
neg_points[:, 1], | |
color='red', | |
marker='*', | |
s=marker_size, | |
edgecolor='white', | |
linewidth=1.25) | |
def fig2img(fig): | |
"""Convert a Matplotlib figure to a PIL Image and return it""" | |
import io | |
buf = io.BytesIO() | |
fig.savefig(buf) | |
buf.seek(0) | |
img = Image.open(buf) | |
return img | |
def show_mask_on_image(raw_image, mask, return_image=False): | |
if not isinstance(mask, torch.Tensor): | |
mask = torch.Tensor(mask) | |
if len(mask.shape) == 4: | |
mask = mask.squeeze() | |
fig, axes = plt.subplots(1, 1, figsize=(15, 15)) | |
mask = mask.cpu().detach() | |
axes.imshow(np.array(raw_image)) | |
show_mask(mask, axes) | |
axes.axis("off") | |
plt.show() | |
if return_image: | |
fig = plt.gcf() | |
return fig2img(fig) | |
def show_pipe_masks_on_image(raw_image, outputs): | |
plt.imshow(np.array(raw_image)) | |
ax = plt.gca() | |
for mask in outputs["masks"]: | |
show_mask(mask, ax=ax, random_color=True) | |
plt.axis("off") | |
plt.show() |