import io import matplotlib.pyplot as plt import requests import inflect from PIL import Image def load_image_from_url(url): return Image.open(requests.get(url, stream=True).raw) def render_results_in_image(in_pil_img, in_results): plt.figure(figsize=(16, 10)) plt.imshow(in_pil_img) ax = plt.gca() for prediction in in_results: x, y = prediction['box']['xmin'], prediction['box']['ymin'] w = prediction['box']['xmax'] - prediction['box']['xmin'] h = prediction['box']['ymax'] - prediction['box']['ymin'] ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color="green", linewidth=2)) ax.text( x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", color='red' ) plt.axis("off") # Save the modified image to a BytesIO object img_buf = io.BytesIO() plt.savefig(img_buf, format='png', bbox_inches='tight', pad_inches=0) img_buf.seek(0) modified_image = Image.open(img_buf) # Close the plot to prevent it from being displayed plt.close() return modified_image def summarize_predictions_natural_language(predictions): summary = {} p = inflect.engine() for prediction in predictions: label = prediction['label'] if label in summary: summary[label] += 1 else: summary[label] = 1 result_string = "In this image, there are " for i, (label, count) in enumerate(summary.items()): count_string = p.number_to_words(count) result_string += f"{count_string} {label}" if count > 1: result_string += "s" result_string += " " if i == len(summary) - 2: result_string += "and " # Remove the trailing comma and space result_string = result_string.rstrip(', ') + "." return result_string ##### To ignore warnings ##### import warnings import logging from transformers import logging as hf_logging def ignore_warnings(): # Ignore specific Python warnings warnings.filterwarnings("ignore", message="Some weights of the model checkpoint") warnings.filterwarnings("ignore", message="Could not find image processor class") warnings.filterwarnings("ignore", message="The `max_size` parameter is deprecated") # Adjust logging for libraries using the logging module logging.basicConfig(level=logging.ERROR) hf_logging.set_verbosity_error() ######## import numpy as np import torch import matplotlib.pyplot as plt def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) def show_boxes_on_image(raw_image, boxes): plt.figure(figsize=(10,10)) plt.imshow(raw_image) for box in boxes: show_box(box, plt.gca()) plt.axis('on') plt.show() def show_points_on_image(raw_image, input_points, input_labels=None): plt.figure(figsize=(10,10)) plt.imshow(raw_image) input_points = np.array(input_points) if input_labels is None: labels = np.ones_like(input_points[:, 0]) else: labels = np.array(input_labels) show_points(input_points, labels, plt.gca()) plt.axis('on') plt.show() def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None): plt.figure(figsize=(10,10)) plt.imshow(raw_image) input_points = np.array(input_points) if input_labels is None: labels = np.ones_like(input_points[:, 0]) else: labels = np.array(input_labels) show_points(input_points, labels, plt.gca()) for box in boxes: show_box(box, plt.gca()) plt.axis('on') plt.show() def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None): plt.figure(figsize=(10,10)) plt.imshow(raw_image) input_points = np.array(input_points) if input_labels is None: labels = np.ones_like(input_points[:, 0]) else: labels = np.array(input_labels) show_points(input_points, labels, plt.gca()) for box in boxes: show_box(box, plt.gca()) plt.axis('on') plt.show() def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) def fig2img(fig): """Convert a Matplotlib figure to a PIL Image and return it""" import io buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img def show_mask_on_image(raw_image, mask, return_image=False): if not isinstance(mask, torch.Tensor): mask = torch.Tensor(mask) if len(mask.shape) == 4: mask = mask.squeeze() fig, axes = plt.subplots(1, 1, figsize=(15, 15)) mask = mask.cpu().detach() axes.imshow(np.array(raw_image)) show_mask(mask, axes) axes.axis("off") plt.show() if return_image: fig = plt.gcf() return fig2img(fig) def show_pipe_masks_on_image(raw_image, outputs): plt.imshow(np.array(raw_image)) ax = plt.gca() for mask in outputs["masks"]: show_mask(mask, ax=ax, random_color=True) plt.axis("off") plt.show()