Spaces:
Sleeping
Sleeping
File size: 8,303 Bytes
bac90e2 f967233 7ff5a5f f967233 4a6ffa9 f967233 4a6ffa9 f967233 4a6ffa9 f967233 4a6ffa9 f967233 4a6ffa9 f967233 4a6ffa9 b9f8e19 4d40d65 7213597 4a6ffa9 ef4f099 e937327 cc4707b 1166206 aa750aa e937327 f967233 4d40d65 79b7ab6 4d40d65 2531b3b 94245dc 2531b3b f967233 4d40d65 5b858b3 94245dc 4d40d65 b9f8e19 94245dc 4a6ffa9 5ee1375 fc375ae 5ee1375 7ff5a5f c096c10 7213597 5ee1375 7ff5a5f 5ee1375 7ff5a5f c096c10 7213597 5ee1375 2320c9b a43f4e7 7ff5a5f a43f4e7 7ff5a5f 5ee1375 4a6ffa9 7213597 2320c9b 4a6ffa9 2320c9b 7ff5a5f f967233 7ff5a5f 38a30d6 dff518b 38a30d6 f967233 dff518b 4457702 9b13d7e f967233 9b13d7e f967233 9b13d7e dff518b 5ee1375 7ff5a5f 5ee1375 7ff5a5f 5ee1375 b220eb0 5ee1375 b220eb0 9f6f8e9 5ee1375 b220eb0 dc597fc 7cc4123 e418469 dc597fc 2531b3b 7ff5a5f 2531b3b f4b4efa 2531b3b a68dd63 7ff5a5f dff518b b9f8e19 dff518b 7ff5a5f dff518b 7ff5a5f dff518b 4a6ffa9 a77f178 4a6ffa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import string
import time
from typing import Any, Dict, List, Tuple, Union
import chromadb
import numpy as np
import openai
import pandas as pd
import requests
import streamlit as st
from datasets import load_dataset
from langchain.document_loaders import TextLoader
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from scipy.spatial.distance import cosine
from utils.helper_functions import *
openai.api_key = os.environ["OPENAI_API_KEY"]
# Front-end Design
st.set_page_config(layout="wide")
st.title("YSA|Larkin Chatbot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
st.sidebar.markdown(
"""
### Instructions:
This app guides you through YSA's website, utilizing a RAG-ready Q&A dataset [here](https://huggingface.co/datasets/eagle0504/youthless-homeless-shelter-web-scrape-dataset-qa-formatted) for chatbot assistance. The Larkin domain is processed into QA data [here](https://huggingface.co/datasets/eagle0504/larkin-web-scrape-dataset-qa-formatted). 🤖 Enter a question, and it finds similar ones in the database, offering answers with a distance score to gauge relevance—the lower the score, the closer the match. 🎯 For better accuracy and to reduce errors, user feedback helps refine the database. ✨
"""
)
st.sidebar.success("Select a shelter first!")
option = st.sidebar.selectbox("Which website do you want to ask?", ("YSA", "Larkin"))
st.sidebar.warning(
"Runnning AI Judge takes a bit longer so we default this option as 'No'."
)
run_ai_judge = st.sidebar.selectbox(
"Shall we run AI Judge to provide additional scores?", ("No", "Yes")
)
special_threshold = st.sidebar.number_input(
"Insert a threshold for distances score to filter data (default 0.2):",
value=0.2,
placeholder="Type a number...",
)
st.sidebar.success(
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
)
clear_button = st.sidebar.button("Clear Conversation", key="clear")
if clear_button:
st.session_state.messages = []
# Load the dataset from a provided source.
if option == "YSA":
begin_t = time.time()
dataset = load_dataset(
"eagle0504/youthless-homeless-shelter-web-scrape-dataset-qa-formatted"
)
end_t = time.time()
st.success(f"{option} Database loaded. | Time: {end_t - begin_t} sec")
initial_input = "Tell me about YSA"
else:
begin_t = time.time()
dataset = load_dataset("eagle0504/larkin-web-scrape-dataset-qa-formatted")
end_t = time.time()
st.success(f"{option} Database loaded. | Time: {end_t - begin_t} sec")
initial_input = "Tell me about Larkin"
# Initialize a new client for ChromeDB.
client = chromadb.Client()
# Generate a random number between 1 billion and 10 billion.
random_number: int = np.random.randint(low=1e9, high=1e10)
# Generate a random string consisting of 10 uppercase letters and digits.
random_string: str = "".join(
np.random.choice(list(string.ascii_uppercase + string.digits), size=10)
)
# Combine the random number and random string into one identifier.
combined_string: str = f"{random_number}{random_string}"
# Create a new collection in ChromeDB with the combined string as its name.
collection = client.create_collection(combined_string)
# Embed and store the first N supports for this demo
with st.spinner("Loading, please be patient with us ... 🙏"):
L = len(dataset["train"]["questions"])
begin_t = time.time()
collection.add(
ids=[str(i) for i in range(0, L)], # IDs are just strings
documents=dataset["train"]["questions"], # Enter questions here
metadatas=[{"type": "support"} for _ in range(0, L)],
)
end_t = time.time()
st.success(f"Add to VectorDB. | Time: {end_t - begin_t} sec")
# React to user input
if prompt := st.chat_input(initial_input):
with st.spinner("Loading, please be patient with us ... 🙏"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
question = prompt
begin_t = time.time()
results = collection.query(query_texts=question, n_results=5)
end_t = time.time()
st.success(f"Query answser. | Time: {end_t - begin_t} sec")
idx = results["ids"][0]
idx = [int(i) for i in idx]
ref = pd.DataFrame(
{
"idx": idx,
"questions": [dataset["train"]["questions"][i] for i in idx],
"answers": [dataset["train"]["answers"][i] for i in idx],
"distances": results["distances"][0],
}
)
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
filtered_ref = ref[ref["distances"] < special_threshold]
if filtered_ref.shape[0] > 0:
st.success("There are highly relevant information in our database.")
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
final_ref = filtered_ref
else:
st.warning(
"The database may not have relevant information to help your question so please be aware of hallucinations."
)
ref_from_db_search = ref["answers"].str.cat(sep=" ")
final_ref = ref
if option == "YSA":
try:
begin_t = time.time()
llm_response = llama2_7b_ysa(question)
end_t = time.time()
st.success(f"Running LLM. | Time: {end_t - begin_t} sec")
except:
st.warning("Sorry, the inference endpoint is temporarily down. 😔")
llm_response = "NA."
else:
st.warning(
"Apologies! We are in the progress of fine-tune the model, so it's currently unavailable. ⚙️"
)
llm_response = "NA"
finetuned_llm_guess = ["from_llm", question, llm_response, 0]
final_ref.loc[-1] = finetuned_llm_guess
final_ref = final_ref.reset_index()
# add ai judge as additional rating
if run_ai_judge == "Yes":
independent_ai_judge_score = []
begin_t = time.time()
for i in range(final_ref.shape[0]):
this_content = final_ref["answers"][i]
if len(this_content) > 3:
arr1 = openai_text_embedding(question)
arr2 = openai_text_embedding(this_content)
# this_score = calculate_sts_openai_score(question, this_content)
this_score = quantized_influence(arr1, arr2)
else:
this_score = 0
independent_ai_judge_score.append(this_score)
final_ref["ai_judge"] = independent_ai_judge_score
end_t = time.time()
st.success(f"Using AI Judge. | Time: {end_t - begin_t} sec")
engineered_prompt = f"""
Based on the context: {ref_from_db_search}
answer the user question: {question}
Answer the question directly (don't say "based on the context, ...")
"""
begin_t = time.time()
answer = call_chatgpt(engineered_prompt)
end_t = time.time()
st.success(f"Final API Call. | Time: {end_t - begin_t} sec")
response = answer
# Display assistant response in chat message container
with st.chat_message("assistant"):
with st.spinner("Wait for it..."):
st.markdown(response)
with st.expander("See reference:"):
st.table(final_ref)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
|