Update helper/utils.py
Browse files- helper/utils.py +38 -6
helper/utils.py
CHANGED
@@ -52,11 +52,6 @@ def current_year():
|
|
52 |
# return [text_list, sources_list]
|
53 |
|
54 |
|
55 |
-
from typing import List, Tuple
|
56 |
-
|
57 |
-
import PyPDF2
|
58 |
-
|
59 |
-
|
60 |
def read_and_textify(
|
61 |
files: List[str], chunk_size: int = 2 # Default chunk size set to 50
|
62 |
) -> Tuple[List[str], List[str]]:
|
@@ -134,6 +129,43 @@ def list_to_nums(sentences: List[str]) -> List[List[float]]:
|
|
134 |
return embeddings
|
135 |
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
def quantize_to_kbit(arr: Union[np.ndarray, Any], k: int = 16) -> np.ndarray:
|
138 |
"""Converts an array to a k-bit representation by normalizing and scaling its values.
|
139 |
|
@@ -256,4 +288,4 @@ def query_search(
|
|
256 |
# Sort the DataFrame based on the 'qim' score in descending order
|
257 |
refs = refs.sort_values(by="qim", ascending=False)
|
258 |
|
259 |
-
return refs
|
|
|
52 |
# return [text_list, sources_list]
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
def read_and_textify(
|
56 |
files: List[str], chunk_size: int = 2 # Default chunk size set to 50
|
57 |
) -> Tuple[List[str], List[str]]:
|
|
|
129 |
return embeddings
|
130 |
|
131 |
|
132 |
+
def call_gpt4(prompt: str) -> str:
|
133 |
+
"""
|
134 |
+
Sends a prompt to the GPT-4 model and retrieves a response.
|
135 |
+
|
136 |
+
This function interacts with the OpenAI API, specifically using
|
137 |
+
the gpt-3.5-turbo model to generate a conversational response.
|
138 |
+
It simulates a conversation by providing system messages,
|
139 |
+
past interactions, and the latest user query.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
- prompt (str): The message from the user for which the GPT model will generate a response.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
- str: The content of the message generated by the GPT model in response to the prompt.
|
146 |
+
|
147 |
+
Note: This function assumes that 'client' is an instance of OpenAI's client object
|
148 |
+
that has been properly authenticated and initialized elsewhere in your code.
|
149 |
+
"""
|
150 |
+
|
151 |
+
# Interact with the OpenAI API to get a response for the prompt provided
|
152 |
+
response = client.chat.completions.create(
|
153 |
+
model="gpt-3.5-turbo", # Specifies the AI model to use for the response
|
154 |
+
messages=[ # Constructs the context and the prompt for the AI
|
155 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
156 |
+
{"role": "user", "content": "Who won the world series in 2020?"},
|
157 |
+
{
|
158 |
+
"role": "assistant",
|
159 |
+
"content": "The Los Angeles Dodgers won the World Series in 2020."
|
160 |
+
},
|
161 |
+
{"role": "user", "content": "Where was it played?"}
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
# Return the AI's response to the user's most recent prompt
|
166 |
+
return response.choices[0].message.content
|
167 |
+
|
168 |
+
|
169 |
def quantize_to_kbit(arr: Union[np.ndarray, Any], k: int = 16) -> np.ndarray:
|
170 |
"""Converts an array to a k-bit representation by normalizing and scaling its values.
|
171 |
|
|
|
288 |
# Sort the DataFrame based on the 'qim' score in descending order
|
289 |
refs = refs.sort_values(by="qim", ascending=False)
|
290 |
|
291 |
+
return refs
|