Spaces:
Running
Running
Create utils/helper.py
Browse files- utils/helper.py +404 -0
utils/helper.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import streamlit as st
|
4 |
+
import yfinance as yf
|
5 |
+
from plotly.subplots import make_subplots
|
6 |
+
from scipy.stats import norm
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
def calculate_macd(
|
11 |
+
data: pd.DataFrame,
|
12 |
+
short_window: int = 12,
|
13 |
+
long_window: int = 26,
|
14 |
+
signal_window: int = 9,
|
15 |
+
) -> pd.DataFrame:
|
16 |
+
"""
|
17 |
+
Calculate the Moving Average Convergence Divergence (MACD) and Signal line indicators.
|
18 |
+
|
19 |
+
Parameters:
|
20 |
+
data (pd.DataFrame): The dataframe containing stock price information.
|
21 |
+
short_window (int): The number of periods for the shorter exponential moving average (EMA).
|
22 |
+
Default is 12.
|
23 |
+
long_window (int): The number of periods for the longer EMA. Default is 26.
|
24 |
+
signal_window (int): The number of periods for the signal line EMA. Default is 9.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
pd.DataFrame: The input Dataframe with additional columns 'MACD' and 'Signal_Line'
|
28 |
+
which contains the computed MACD values and signal line values respectively.
|
29 |
+
|
30 |
+
Note: The function assumes that the input DataFrame contains a 'Close' column from which it computes the EMAs.
|
31 |
+
"""
|
32 |
+
# Calculate the Short term Exponential Moving Average
|
33 |
+
short_ema = data.Close.ewm(span=short_window, adjust=False).mean()
|
34 |
+
|
35 |
+
# Calculate the Long term Exponential Moving Average
|
36 |
+
long_ema = data.Close.ewm(span=long_window, adjust=False).mean()
|
37 |
+
|
38 |
+
# Compute MACD (short EMA - long EMA)
|
39 |
+
data["MACD"] = short_ema - long_ema
|
40 |
+
|
41 |
+
# Compute Signal Line (EMA of MACD)
|
42 |
+
data["Signal_Line"] = data.MACD.ewm(span=signal_window, adjust=False).mean()
|
43 |
+
|
44 |
+
return data
|
45 |
+
|
46 |
+
|
47 |
+
def calculate_normalized_macd(
|
48 |
+
data: pd.DataFrame,
|
49 |
+
short_window: int = 12,
|
50 |
+
long_window: int = 26,
|
51 |
+
signal_window: int = 9,
|
52 |
+
) -> pd.DataFrame:
|
53 |
+
"""
|
54 |
+
Calculate the normalized Moving Average Convergence Divergence (MACD) and Signal line.
|
55 |
+
|
56 |
+
The MACD is a trend-following momentum indicator that shows the relationship between
|
57 |
+
two moving averages of a security's price. The MACD is calculated by subtracting the
|
58 |
+
long-term exponential moving average (EMA) from the short-term EMA. A nine-day EMA of
|
59 |
+
the MACD called the "Signal Line," is then plotted on top of the MACD, functioning as
|
60 |
+
a trigger for buy and sell signals.
|
61 |
+
|
62 |
+
This function adds a normalization step to the typical MACD calculation by standardizing
|
63 |
+
the values using z-scores.
|
64 |
+
|
65 |
+
Parameters:
|
66 |
+
data (pd.DataFrame): The dataframe containing stock price information with a 'Close' column.
|
67 |
+
short_window (int): The number of periods for the shorter EMA. Default is 12.
|
68 |
+
long_window (int): The number of periods for the longer EMA. Default is 26.
|
69 |
+
signal_window (int): The number of periods for the signal line EMA. Default is 9.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
pd.DataFrame: The input Dataframe is returned with additional columns 'MACD' and 'Signal_Line',
|
73 |
+
which contains the computed normalized MACD and signal line values respectively.
|
74 |
+
"""
|
75 |
+
# Calculate the Short term Exponential Moving Average
|
76 |
+
short_ema = data.Close.ewm(span=short_window, adjust=False).mean()
|
77 |
+
|
78 |
+
# Calculate the Long term Exponential Moving Average
|
79 |
+
long_ema = data.Close.ewm(span=long_window, adjust=False).mean()
|
80 |
+
|
81 |
+
# Compute MACD (short EMA - long EMA)
|
82 |
+
data["MACD"] = short_ema - long_ema
|
83 |
+
|
84 |
+
# Compute Signal Line (EMA of MACD)
|
85 |
+
data["Signal_Line"] = data.MACD.ewm(span=signal_window, adjust=False).mean()
|
86 |
+
|
87 |
+
# Normalize the 'MACD' column using z-score normalization
|
88 |
+
data["MACD"] = (data["MACD"] - data["MACD"].mean()) / data["MACD"].std()
|
89 |
+
|
90 |
+
# Normalize the 'Signal_Line' column using z-score normalization
|
91 |
+
data["Signal_Line"] = (data["Signal_Line"] - data["Signal_Line"].mean()) / data[
|
92 |
+
"Signal_Line"
|
93 |
+
].std()
|
94 |
+
|
95 |
+
return data
|
96 |
+
|
97 |
+
|
98 |
+
def calculate_percentile_macd(
|
99 |
+
data: pd.DataFrame,
|
100 |
+
short_window: int = 12,
|
101 |
+
long_window: int = 26,
|
102 |
+
signal_window: int = 9,
|
103 |
+
) -> pd.DataFrame:
|
104 |
+
"""
|
105 |
+
Calculate the percentile-based Moving Average Convergence Divergence (MACD) and Signal line.
|
106 |
+
|
107 |
+
This function computes the MACD by subtracting the long-term exponential moving average (EMA)
|
108 |
+
from the short-term EMA. It then calculates the Signal Line, which is a smoothing of the MACD
|
109 |
+
values. After normalization using z-scores, the normalized MACD and Signal Line values are converted
|
110 |
+
to percentiles, which are then rescaled to range from -100% to +100%.
|
111 |
+
|
112 |
+
Parameters:
|
113 |
+
data (pd.DataFrame): The dataframe containing stock price information with a 'Close' column.
|
114 |
+
short_window (int): The number of periods for the shorter EMA. Default is 12.
|
115 |
+
long_window (int): The number of periods for the longer EMA. Default is 26.
|
116 |
+
signal_window (int): The number of periods for the signal line EMA. Default is 9.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
pd.DataFrame: The input Dataframe with additional columns 'MACD' and 'Signal_Line', representing
|
120 |
+
the rescaled percentile values of the corresponding MACD and signal line calculations.
|
121 |
+
"""
|
122 |
+
# Calculate the Short term Exponential Moving Average
|
123 |
+
short_ema = data.Close.ewm(span=short_window, adjust=False).mean()
|
124 |
+
|
125 |
+
# Calculate the Long term Exponential Moving Average
|
126 |
+
long_ema = data.Close.ewm(span=long_window, adjust=False).mean()
|
127 |
+
|
128 |
+
# Compute MACD (short EMA - long EMA)
|
129 |
+
data["MACD"] = short_ema - long_ema
|
130 |
+
|
131 |
+
# Compute Signal Line (EMA of MACD)
|
132 |
+
data["Signal_Line"] = data.MACD.ewm(span=signal_window, adjust=False).mean()
|
133 |
+
|
134 |
+
# Normalize the 'MACD' column using z-score normalization
|
135 |
+
data["MACD"] = (data["MACD"] - data["MACD"].mean()) / data["MACD"].std()
|
136 |
+
|
137 |
+
# Normalize the 'Signal_Line' column using z-score normalization
|
138 |
+
data["Signal_Line"] = (data["Signal_Line"] - data["Signal_Line"].mean()) / data[
|
139 |
+
"Signal_Line"
|
140 |
+
].std()
|
141 |
+
|
142 |
+
# Convert normalized data to percentiles (CDF) and rescale to -100% to +100%
|
143 |
+
# Rescaling allows comparing the relative position of the current value within the distribution
|
144 |
+
data["MACD"] = norm.cdf(data["MACD"]) * 200 - 100
|
145 |
+
data["Signal_Line"] = norm.cdf(data["Signal_Line"]) * 200 - 100
|
146 |
+
|
147 |
+
return data
|
148 |
+
|
149 |
+
|
150 |
+
def find_crossovers(
|
151 |
+
df: pd.DataFrame, bullish_threshold: float, bearish_threshold: float
|
152 |
+
) -> pd.DataFrame:
|
153 |
+
"""
|
154 |
+
Identifies the bullish and bearish crossover points between MACD and Signal Line.
|
155 |
+
|
156 |
+
This function checks where the MACD line crosses the Signal Line from below (bullish crossover)
|
157 |
+
or from above (bearish crossover). It then marks these crossovers with a 1 for bullish or -1
|
158 |
+
for bearish within a new column in the DataFrame called 'Crossover'.
|
159 |
+
|
160 |
+
Parameters:
|
161 |
+
df (pd.DataFrame): The dataframe containing the columns 'MACD' and 'Signal_Line'.
|
162 |
+
bullish_threshold (float): The threshold above which a crossover is considered bullish.
|
163 |
+
bearish_threshold (float): The threshold below which a crossover is considered bearish.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
pd.DataFrame: The input DataFrame with an additional 'Crossover' column indicating
|
167 |
+
the bullish (+1) and bearish (-1) crossovers.
|
168 |
+
"""
|
169 |
+
|
170 |
+
# Initialize 'Crossover' column to zero, indicating no crossover by default
|
171 |
+
df["Crossover"] = 0
|
172 |
+
|
173 |
+
# Find bullish crossovers - when the MACD crosses the Signal Line from below
|
174 |
+
# and the Signal Line is below the bullish threshold.
|
175 |
+
crossover_indices = df.index[
|
176 |
+
(df["MACD"] > df["Signal_Line"])
|
177 |
+
& (df["MACD"].shift() < df["Signal_Line"].shift())
|
178 |
+
& (df["Signal_Line"] < bullish_threshold)
|
179 |
+
]
|
180 |
+
# Mark the bullish crossovers with 1 in the 'Crossover' column
|
181 |
+
df.loc[crossover_indices, "Crossover"] = 1
|
182 |
+
|
183 |
+
# Find bearish crossovers - when the MACD crosses the Signal Line from above
|
184 |
+
# and the Signal Line is above the bearish threshold.
|
185 |
+
crossover_indices = df.index[
|
186 |
+
(df["MACD"] < df["Signal_Line"])
|
187 |
+
& (df["MACD"].shift() > df["Signal_Line"].shift())
|
188 |
+
& (df["Signal_Line"] > bearish_threshold)
|
189 |
+
]
|
190 |
+
# Mark the bearish crossovers with -1 in the 'Crossover' column
|
191 |
+
df.loc[crossover_indices, "Crossover"] = -1
|
192 |
+
|
193 |
+
return df
|
194 |
+
|
195 |
+
|
196 |
+
def get_fundamentals(ticker: str):
|
197 |
+
"""
|
198 |
+
Fetches the income statement, balance sheet, and cash flow statement for a given stock ticker.
|
199 |
+
|
200 |
+
This function retrieves fundamental financial information about a stock using the yfinance library,
|
201 |
+
which fetches this data from Yahoo Finance.
|
202 |
+
|
203 |
+
Parameters:
|
204 |
+
ticker (str): The stock symbol to query.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
tuple of pandas.DataFrame: A 3-tuple where the first element is an income statement DataFrame,
|
208 |
+
the second is a balance sheet DataFrame, and the third
|
209 |
+
is a cash flow statement DataFrame.
|
210 |
+
"""
|
211 |
+
# Create a Ticker object which allows access to Yahoo finance's vast data source
|
212 |
+
stock = yf.Ticker(ticker)
|
213 |
+
|
214 |
+
# Fetching and returning annual income statement, balance sheet, and cashflow data
|
215 |
+
return stock.income_stmt, stock.balance_sheet, stock.cashflow
|
216 |
+
|
217 |
+
|
218 |
+
def create_fig(data: pd.DataFrame, ticker: str) -> go.Figure:
|
219 |
+
"""
|
220 |
+
Creates a Plotly graph object (figure) that includes a candlestick plot of the stock prices,
|
221 |
+
moving averages and a MACD (Moving Average Convergence Divergence) chart for the given data.
|
222 |
+
|
223 |
+
Parameters:
|
224 |
+
data (pandas.DataFrame): The input data containing the stock price information.
|
225 |
+
It must include 'Close', 'Open', 'High', 'Low' columns and
|
226 |
+
'MACD', 'Signal_Line', 'Crossover' values calculated externally.
|
227 |
+
ticker (str): The stock symbol used in subplot titles to indicate the stock being analyzed.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
plotly.graph_objs._figure.Figure: A figure object which includes the visualization of
|
231 |
+
the stock prices with moving averages and a MACD chart.
|
232 |
+
"""
|
233 |
+
|
234 |
+
# Calculate moving averages
|
235 |
+
data["MA12"] = data["Close"].rolling(window=12).mean()
|
236 |
+
data["MA26"] = data["Close"].rolling(window=26).mean()
|
237 |
+
data["MA50"] = data["Close"].rolling(window=50).mean()
|
238 |
+
data["MA200"] = data["Close"].rolling(window=200).mean()
|
239 |
+
|
240 |
+
# Initialize figure with subplots
|
241 |
+
fig = make_subplots(
|
242 |
+
rows=2,
|
243 |
+
cols=1,
|
244 |
+
shared_xaxes=True,
|
245 |
+
vertical_spacing=0.02,
|
246 |
+
subplot_titles=(f"{ticker} Candlestick", "MACD"),
|
247 |
+
row_width=[0.2, 0.7],
|
248 |
+
)
|
249 |
+
|
250 |
+
# Add Candlestick trace
|
251 |
+
fig.add_trace(
|
252 |
+
go.Candlestick(
|
253 |
+
x=data.index,
|
254 |
+
open=data["Open"],
|
255 |
+
high=data["High"],
|
256 |
+
low=data["Low"],
|
257 |
+
close=data["Close"],
|
258 |
+
name="Candlestick",
|
259 |
+
),
|
260 |
+
row=1,
|
261 |
+
col=1,
|
262 |
+
)
|
263 |
+
|
264 |
+
# Add Moving Average traces
|
265 |
+
for ma, color in zip(
|
266 |
+
["MA12", "MA26", "MA50", "MA200"], ["magenta", "cyan", "yellow", "black"]
|
267 |
+
):
|
268 |
+
fig.add_trace(
|
269 |
+
go.Scatter(
|
270 |
+
x=data.index,
|
271 |
+
y=data[ma],
|
272 |
+
line=dict(color=color, width=1.5),
|
273 |
+
name=f"{ma} days MA",
|
274 |
+
),
|
275 |
+
row=1,
|
276 |
+
col=1,
|
277 |
+
)
|
278 |
+
|
279 |
+
# Add MACD and Signal Line traces
|
280 |
+
fig.add_trace(
|
281 |
+
go.Scatter(
|
282 |
+
x=data.index, y=data["MACD"], line=dict(color="blue", width=2), name="MACD"
|
283 |
+
),
|
284 |
+
row=2,
|
285 |
+
col=1,
|
286 |
+
)
|
287 |
+
fig.add_trace(
|
288 |
+
go.Scatter(
|
289 |
+
x=data.index,
|
290 |
+
y=data["Signal_Line"],
|
291 |
+
line=dict(color="orange", width=2),
|
292 |
+
name="Signal Line",
|
293 |
+
),
|
294 |
+
row=2,
|
295 |
+
col=1,
|
296 |
+
)
|
297 |
+
|
298 |
+
# Add markers for Bullish and Bearish crossovers on MACD chart
|
299 |
+
fig.add_trace(
|
300 |
+
go.Scatter(
|
301 |
+
mode="markers",
|
302 |
+
x=data[data["Crossover"] == 1].index,
|
303 |
+
y=data[data["Crossover"] == 1]["MACD"],
|
304 |
+
marker_symbol="triangle-up",
|
305 |
+
marker_color="green",
|
306 |
+
marker_size=20,
|
307 |
+
name="Bullish Crossover (MACD) ✅",
|
308 |
+
),
|
309 |
+
row=2,
|
310 |
+
col=1,
|
311 |
+
)
|
312 |
+
fig.add_trace(
|
313 |
+
go.Scatter(
|
314 |
+
mode="markers",
|
315 |
+
x=data[data["Crossover"] == -1].index,
|
316 |
+
y=data[data["Crossover"] == -1]["MACD"],
|
317 |
+
marker_symbol="triangle-down",
|
318 |
+
marker_color="red",
|
319 |
+
marker_size=20,
|
320 |
+
name="Bearish Crossover (MACD) 🈲",
|
321 |
+
),
|
322 |
+
row=2,
|
323 |
+
col=1,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Add markers for Bullish and Bearish crossovers on the Candlestick chart
|
327 |
+
fig.add_trace(
|
328 |
+
go.Scatter(
|
329 |
+
mode="markers",
|
330 |
+
x=data[data["Crossover"] == 1].index,
|
331 |
+
y=data[data["Crossover"] == 1]["Close"],
|
332 |
+
marker_symbol="triangle-up",
|
333 |
+
marker_color="green",
|
334 |
+
marker_size=25,
|
335 |
+
name="Bullish Crossover (Close) ✅",
|
336 |
+
),
|
337 |
+
row=1,
|
338 |
+
col=1,
|
339 |
+
)
|
340 |
+
fig.add_trace(
|
341 |
+
go.Scatter(
|
342 |
+
mode="markers",
|
343 |
+
x=data[data["Crossover"] == -1].index,
|
344 |
+
y=data[data["Crossover"] == -1]["Close"],
|
345 |
+
marker_symbol="triangle-down",
|
346 |
+
marker_color="red",
|
347 |
+
marker_size=25,
|
348 |
+
name="Bearish Crossover (Close) 🈲",
|
349 |
+
),
|
350 |
+
row=1,
|
351 |
+
col=1,
|
352 |
+
)
|
353 |
+
|
354 |
+
# Update layout configurations
|
355 |
+
fig.update_layout(
|
356 |
+
xaxis_rangeslider_visible=False,
|
357 |
+
height=800, # Define the height of the figure
|
358 |
+
)
|
359 |
+
|
360 |
+
return fig
|
361 |
+
|
362 |
+
|
363 |
+
def generate_simulated_data(data: pd.DataFrame, num_days: int) -> pd.DataFrame:
|
364 |
+
"""
|
365 |
+
Generates simulated future data for a given DataFrame based on the statistical characteristics
|
366 |
+
(mean and standard deviation) of the input data.
|
367 |
+
|
368 |
+
The simulation assumes normally distributed returns and extrapolates future values by computing
|
369 |
+
the cumulative product of random returns.
|
370 |
+
|
371 |
+
Parameters:
|
372 |
+
data (pandas.DataFrame): The historical data on which the simulation will be based. The index must be date-based.
|
373 |
+
num_days (int): The number of days into the future for which data should be simulated.
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
pandas.DataFrame: A DataFrame containing the original historical data appended with the simulated future data.
|
377 |
+
"""
|
378 |
+
|
379 |
+
# Compute mean and standard deviation for each column
|
380 |
+
means = data.mean()
|
381 |
+
stds = data.std()
|
382 |
+
|
383 |
+
# Generate random returns from normal distribution
|
384 |
+
random_returns = pd.DataFrame()
|
385 |
+
for col in data.columns:
|
386 |
+
random_returns[col] = np.random.normal(loc=means[col], scale=stds[col], size=num_days)
|
387 |
+
|
388 |
+
# Add 1 to the returns
|
389 |
+
random_returns += 1
|
390 |
+
|
391 |
+
# Compute cumulative product to get factors
|
392 |
+
factors = random_returns.cumprod()
|
393 |
+
|
394 |
+
# Generate future dates
|
395 |
+
last_date = data.index[-1]
|
396 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(days=1), periods=num_days)
|
397 |
+
|
398 |
+
# Append future factors to original data
|
399 |
+
future_data = pd.DataFrame(index=future_dates, columns=data.columns, data=factors.values)
|
400 |
+
|
401 |
+
# Concatenate original data and future data
|
402 |
+
simulated_data = pd.concat([data, future_data])
|
403 |
+
|
404 |
+
return simulated_data
|