File size: 9,062 Bytes
2f239c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4977282
2f239c7
 
 
4977282
2f239c7
 
 
 
 
 
 
 
 
 
 
4977282
 
 
 
2f239c7
 
 
 
 
 
4977282
 
 
2f239c7
 
 
 
 
 
4977282
 
 
2f239c7
 
 
 
 
 
4977282
 
 
 
 
 
 
2f239c7
 
 
4977282
 
 
 
 
2f239c7
 
 
 
4977282
 
 
 
 
2f239c7
 
 
4977282
2f239c7
4977282
 
2f239c7
 
 
 
 
 
 
 
4977282
2f239c7
 
 
 
4977282
 
 
 
 
2f239c7
4977282
 
 
 
2f239c7
 
 
 
 
 
 
 
4977282
2f239c7
4977282
2f239c7
 
4977282
 
2f239c7
 
 
4977282
2f239c7
 
 
 
4977282
 
2f239c7
 
 
 
 
 
 
 
4977282
2f239c7
 
 
4977282
 
2f239c7
1c115cc
4977282
 
 
 
 
2f239c7
 
4977282
2f239c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4977282
2f239c7
 
ebf23bb
2f239c7
 
 
 
4977282
2f239c7
 
 
4977282
2f239c7
 
4977282
2f239c7
 
4977282
 
 
 
 
2f239c7
 
4977282
2f239c7
4977282
2f239c7
 
4977282
 
2f239c7
4977282
 
2f239c7
 
 
 
 
 
 
 
4977282
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from crewai import Agent, Task, Crew
import gradio as gr
import asyncio
from typing import List, Dict, Any, Generator
from langchain_openai import ChatOpenAI
import queue
import threading
import os

class AgentMessageQueue:
    def __init__(self):
        self.message_queue = queue.Queue()

    def add_message(self, message: Dict):
        self.message_queue.put(message)

    def get_messages(self) -> List[Dict]:
        messages = []
        while not self.message_queue.empty():
            messages.append(self.message_queue.get())
        return messages

class PressReleaseCrew:
    def __init__(self, api_key: str = None):
        self.api_key = api_key
        self.message_queue = AgentMessageQueue()
        self.researcher = None
        self.writer = None
        self.editor = None
        self.current_agent = None

    def initialize_agents(self, topic: str):
        if not self.api_key:
            raise ValueError("OpenAI API key is required")

        os.environ["OPENAI_API_KEY"] = self.api_key
        llm = ChatOpenAI(temperature=0.7, model="gpt-4")

        self.researcher = Agent(
            role="News Researcher",
            goal=f"Gather critical details and facts for a press release about {topic}",
            backstory="An experienced journalist who specializes in gathering news and structuring press releases.",
            allow_delegation=False,
            verbose=True,
            llm=llm
        )

        self.writer = Agent(
            role="Press Release Writer",
            goal=f"Draft a compelling and structured press release about {topic}",
            backstory="A seasoned news writer with expertise in crafting clear and engaging press releases.",
            allow_delegation=False,
            verbose=True,
            llm=llm
        )

        self.editor = Agent(
            role="News Editor",
            goal="Refine and finalize the press release for accuracy and professionalism.",
            backstory="A skilled editor with an eye for clarity, conciseness, and journalistic integrity.",
            allow_delegation=False,
            verbose=True,
            llm=llm
        )

    def create_tasks(self, topic: str) -> List[Task]:
        researcher_task = Task(
            description=f"""As a news researcher, compile essential details for a press release on {topic} by:
1. Identifying key facts, statistics, and industry trends
2. Structuring the information into a brief, clear outline
3. Suggesting a compelling press release headline""",
            expected_output="A structured summary with key facts, statistics, and a proposed headline.",
            agent=self.researcher
        )

        writer_task = Task(
            description="""Using the research provided:
1. Write a clear and engaging press release following a journalistic structure
2. Ensure it includes a compelling headline, subheading, lead paragraph, supporting details, and a boilerplate
3. Maintain a professional and neutral tone""",
            expected_output="A structured press release draft ready for editing.",
            agent=self.writer
        )

        editor_task = Task(
            description="""Review and refine the press release by:
1. Checking for clarity, conciseness, and accuracy
2. Ensuring proper journalistic tone and structure
3. Correcting any grammatical or formatting issues""",
            expected_output="A polished, publication-ready press release.",
            agent=self.editor
        )

        return [researcher_task, writer_task, editor_task]

    async def process_press_release(self, topic: str) -> Generator[List[Dict], None, None]:
        def add_agent_messages(agent_name: str, tasks: str, emoji: str = "πŸ“°"):
            self.message_queue.add_message({
                "role": "assistant",
                "content": agent_name,
                "metadata": {"title": f"{emoji} {agent_name}"}
            })
            self.message_queue.add_message({
                "role": "assistant",
                "content": tasks,
                "metadata": {"title": f"πŸ“„ Task for {agent_name}"}
            })

        def setup_next_agent(current_agent: str) -> None:
            agent_sequence = {
                "News Researcher": ("Press Release Writer", """Write a structured and engaging press release including:
1. A compelling headline and subheading
2. A strong lead paragraph
3. Supporting details and key statistics
4. A conclusion with a call to action or company statement"""),
                
                "Press Release Writer": ("News Editor", """Review and refine the press release for:
1. Clarity and conciseness
2. Proper journalistic tone and structure
3. Grammatical accuracy and formatting""")
            }

            if current_agent in agent_sequence:
                next_agent, tasks = agent_sequence[current_agent]
                self.current_agent = next_agent
                add_agent_messages(next_agent, tasks)

        def task_callback(task_output) -> None:
            raw_output = task_output.raw.strip()
            
            if self.current_agent == "News Editor":
                self.message_queue.add_message({
                    "role": "assistant",
                    "content": "Final press release is ready!",
                    "metadata": {"title": "πŸ“ Final Press Release"}
                })
                self.message_queue.add_message({
                    "role": "assistant",
                    "content": raw_output
                })
            else:
                self.message_queue.add_message({
                    "role": "assistant",
                    "content": raw_output,
                    "metadata": {"title": f"πŸ“° Output from {self.current_agent}"}
                })
                setup_next_agent(self.current_agent)

        def step_callback(output: Any) -> None:
            pass

        try:
            self.initialize_agents(topic)
            self.current_agent = "News Researcher"

            yield [{
                "role": "assistant",
                "content": "Starting press release preparation...",
                "metadata": {"title": "πŸš€ Press Release Process Started"}
            }]

            add_agent_messages("News Researcher", 
                """Gather essential details for a press release:
1. Identify key facts, statistics, and industry trends
2. Structure information into a brief outline
3. Suggest a compelling headline""")

            crew = Crew(
                agents=[self.researcher, self.writer, self.editor],
                tasks=self.create_tasks(topic),
                verbose=True,
                step_callback=step_callback,
                task_callback=task_callback
            )

            def run_crew():
                try:
                    crew.kickoff()
                except Exception as e:
                    self.message_queue.add_message({
                        "role": "assistant",
                        "content": f"An error occurred: {str(e)}",
                        "metadata": {"title": "❌ Error"}
                    })

            thread = threading.Thread(target=run_crew)
            thread.start()

            while thread.is_alive() or not self.message_queue.message_queue.empty():
                messages = self.message_queue.get_messages()
                if messages:
                    yield messages
                await asyncio.sleep(0.1)

        except Exception as e:
            yield [{
                "role": "assistant",
                "content": f"An error occurred: {str(e)}",
                "metadata": {"title": "❌ Error"}
            }]

def create_demo():
    press_release_crew = None

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ“° AI Space Launch Newsroom - Press Release Generator")
        
        openai_api_key = gr.Textbox(
            label='OpenAI API Key',
            type='password',
            placeholder='Enter your OpenAI API key...'
        )

        chatbot = gr.Chatbot(
            label="Press Release Process",
            height=700,
            type="messages",
            show_label=True
        )

        topic = gr.Textbox(
            label="Press Release Topic",
            placeholder="Enter topic..."
        )
        btn = gr.Button("Generate Press Release", variant="primary")

        async def process_input(topic, history, api_key):
            nonlocal press_release_crew
            if not api_key:
                yield history + [{"role": "assistant", "content": "Please provide an OpenAI API key."}]
                return

            if press_release_crew is None:
                press_release_crew = PressReleaseCrew(api_key=api_key)

            async for messages in press_release_crew.process_press_release(topic):
                yield messages

        btn.click(process_input, [topic, chatbot, openai_api_key], [chatbot])

    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.queue()
    demo.launch(debug=True)