File size: 9,062 Bytes
2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 1c115cc 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 ebf23bb 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 2f239c7 4977282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from crewai import Agent, Task, Crew
import gradio as gr
import asyncio
from typing import List, Dict, Any, Generator
from langchain_openai import ChatOpenAI
import queue
import threading
import os
class AgentMessageQueue:
def __init__(self):
self.message_queue = queue.Queue()
def add_message(self, message: Dict):
self.message_queue.put(message)
def get_messages(self) -> List[Dict]:
messages = []
while not self.message_queue.empty():
messages.append(self.message_queue.get())
return messages
class PressReleaseCrew:
def __init__(self, api_key: str = None):
self.api_key = api_key
self.message_queue = AgentMessageQueue()
self.researcher = None
self.writer = None
self.editor = None
self.current_agent = None
def initialize_agents(self, topic: str):
if not self.api_key:
raise ValueError("OpenAI API key is required")
os.environ["OPENAI_API_KEY"] = self.api_key
llm = ChatOpenAI(temperature=0.7, model="gpt-4")
self.researcher = Agent(
role="News Researcher",
goal=f"Gather critical details and facts for a press release about {topic}",
backstory="An experienced journalist who specializes in gathering news and structuring press releases.",
allow_delegation=False,
verbose=True,
llm=llm
)
self.writer = Agent(
role="Press Release Writer",
goal=f"Draft a compelling and structured press release about {topic}",
backstory="A seasoned news writer with expertise in crafting clear and engaging press releases.",
allow_delegation=False,
verbose=True,
llm=llm
)
self.editor = Agent(
role="News Editor",
goal="Refine and finalize the press release for accuracy and professionalism.",
backstory="A skilled editor with an eye for clarity, conciseness, and journalistic integrity.",
allow_delegation=False,
verbose=True,
llm=llm
)
def create_tasks(self, topic: str) -> List[Task]:
researcher_task = Task(
description=f"""As a news researcher, compile essential details for a press release on {topic} by:
1. Identifying key facts, statistics, and industry trends
2. Structuring the information into a brief, clear outline
3. Suggesting a compelling press release headline""",
expected_output="A structured summary with key facts, statistics, and a proposed headline.",
agent=self.researcher
)
writer_task = Task(
description="""Using the research provided:
1. Write a clear and engaging press release following a journalistic structure
2. Ensure it includes a compelling headline, subheading, lead paragraph, supporting details, and a boilerplate
3. Maintain a professional and neutral tone""",
expected_output="A structured press release draft ready for editing.",
agent=self.writer
)
editor_task = Task(
description="""Review and refine the press release by:
1. Checking for clarity, conciseness, and accuracy
2. Ensuring proper journalistic tone and structure
3. Correcting any grammatical or formatting issues""",
expected_output="A polished, publication-ready press release.",
agent=self.editor
)
return [researcher_task, writer_task, editor_task]
async def process_press_release(self, topic: str) -> Generator[List[Dict], None, None]:
def add_agent_messages(agent_name: str, tasks: str, emoji: str = "π°"):
self.message_queue.add_message({
"role": "assistant",
"content": agent_name,
"metadata": {"title": f"{emoji} {agent_name}"}
})
self.message_queue.add_message({
"role": "assistant",
"content": tasks,
"metadata": {"title": f"π Task for {agent_name}"}
})
def setup_next_agent(current_agent: str) -> None:
agent_sequence = {
"News Researcher": ("Press Release Writer", """Write a structured and engaging press release including:
1. A compelling headline and subheading
2. A strong lead paragraph
3. Supporting details and key statistics
4. A conclusion with a call to action or company statement"""),
"Press Release Writer": ("News Editor", """Review and refine the press release for:
1. Clarity and conciseness
2. Proper journalistic tone and structure
3. Grammatical accuracy and formatting""")
}
if current_agent in agent_sequence:
next_agent, tasks = agent_sequence[current_agent]
self.current_agent = next_agent
add_agent_messages(next_agent, tasks)
def task_callback(task_output) -> None:
raw_output = task_output.raw.strip()
if self.current_agent == "News Editor":
self.message_queue.add_message({
"role": "assistant",
"content": "Final press release is ready!",
"metadata": {"title": "π Final Press Release"}
})
self.message_queue.add_message({
"role": "assistant",
"content": raw_output
})
else:
self.message_queue.add_message({
"role": "assistant",
"content": raw_output,
"metadata": {"title": f"π° Output from {self.current_agent}"}
})
setup_next_agent(self.current_agent)
def step_callback(output: Any) -> None:
pass
try:
self.initialize_agents(topic)
self.current_agent = "News Researcher"
yield [{
"role": "assistant",
"content": "Starting press release preparation...",
"metadata": {"title": "π Press Release Process Started"}
}]
add_agent_messages("News Researcher",
"""Gather essential details for a press release:
1. Identify key facts, statistics, and industry trends
2. Structure information into a brief outline
3. Suggest a compelling headline""")
crew = Crew(
agents=[self.researcher, self.writer, self.editor],
tasks=self.create_tasks(topic),
verbose=True,
step_callback=step_callback,
task_callback=task_callback
)
def run_crew():
try:
crew.kickoff()
except Exception as e:
self.message_queue.add_message({
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "β Error"}
})
thread = threading.Thread(target=run_crew)
thread.start()
while thread.is_alive() or not self.message_queue.message_queue.empty():
messages = self.message_queue.get_messages()
if messages:
yield messages
await asyncio.sleep(0.1)
except Exception as e:
yield [{
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "β Error"}
}]
def create_demo():
press_release_crew = None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π° AI Space Launch Newsroom - Press Release Generator")
openai_api_key = gr.Textbox(
label='OpenAI API Key',
type='password',
placeholder='Enter your OpenAI API key...'
)
chatbot = gr.Chatbot(
label="Press Release Process",
height=700,
type="messages",
show_label=True
)
topic = gr.Textbox(
label="Press Release Topic",
placeholder="Enter topic..."
)
btn = gr.Button("Generate Press Release", variant="primary")
async def process_input(topic, history, api_key):
nonlocal press_release_crew
if not api_key:
yield history + [{"role": "assistant", "content": "Please provide an OpenAI API key."}]
return
if press_release_crew is None:
press_release_crew = PressReleaseCrew(api_key=api_key)
async for messages in press_release_crew.process_press_release(topic):
yield messages
btn.click(process_input, [topic, chatbot, openai_api_key], [chatbot])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch(debug=True)
|