Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from mistral_common.protocol.instruct.messages import UserMessage
|
4 |
-
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
5 |
-
from mistral_inference.model import Transformer
|
6 |
-
from mistral_inference.generate import generate
|
7 |
-
from transformers import AutoModelForCausalLM
|
8 |
|
9 |
def main():
|
10 |
st.title("Codestral Inference with Hugging Face")
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
user_input = st.text_area("Enter your instruction", "Explain Machine Learning to me in a nutshell.")
|
15 |
max_tokens = st.slider("Max Tokens", min_value=10, max_value=500, value=64)
|
16 |
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7)
|
17 |
|
18 |
if st.button("Generate"):
|
19 |
with st.spinner("Generating response..."):
|
20 |
-
result = generate_response(
|
21 |
st.success("Response generated!")
|
22 |
st.text_area("Generated Response", result, height=200)
|
23 |
|
24 |
-
def generate_response(
|
25 |
-
|
26 |
-
|
27 |
-
tokens = tokenizer.encode_chat_completion(completion_request).tokens
|
28 |
-
|
29 |
-
model = Transformer.from_folder(model_path)
|
30 |
-
out_tokens, _ = generate([tokens], model, max_tokens=max_tokens, temperature=temperature, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
31 |
-
|
32 |
-
result = tokenizer.decode(out_tokens[0])
|
33 |
return result
|
34 |
|
35 |
if __name__ == "__main__":
|
36 |
main()
|
37 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def main():
|
5 |
st.title("Codestral Inference with Hugging Face")
|
6 |
|
7 |
+
# Load the model and tokenizer
|
8 |
+
st.text("Loading model...")
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Codestral-22B-v0.1")
|
10 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Codestral-22B-v0.1")
|
11 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
12 |
+
st.success("Model loaded successfully!")
|
13 |
+
|
14 |
user_input = st.text_area("Enter your instruction", "Explain Machine Learning to me in a nutshell.")
|
15 |
max_tokens = st.slider("Max Tokens", min_value=10, max_value=500, value=64)
|
16 |
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7)
|
17 |
|
18 |
if st.button("Generate"):
|
19 |
with st.spinner("Generating response..."):
|
20 |
+
result = generate_response(generator, user_input, max_tokens, temperature)
|
21 |
st.success("Response generated!")
|
22 |
st.text_area("Generated Response", result, height=200)
|
23 |
|
24 |
+
def generate_response(generator, user_input, max_tokens, temperature):
|
25 |
+
response = generator(user_input, max_new_tokens=max_tokens, do_sample=True, temperature=temperature)
|
26 |
+
result = response[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return result
|
28 |
|
29 |
if __name__ == "__main__":
|
30 |
main()
|
|