eaglelandsonce commited on
Commit
bc74d45
·
verified ·
1 Parent(s): 8fb3c01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -19
app.py CHANGED
@@ -1,37 +1,30 @@
1
  import streamlit as st
2
- from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
3
- from mistral_common.protocol.instruct.messages import UserMessage
4
- from mistral_common.protocol.instruct.request import ChatCompletionRequest
5
- from mistral_inference.model import Transformer
6
- from mistral_inference.generate import generate
7
- from transformers import AutoModelForCausalLM
8
 
9
  def main():
10
  st.title("Codestral Inference with Hugging Face")
11
 
12
- mistral_models_path = st.text_input("Enter the path to your Codestral model", "path/to/mistral_models/Codestral-22B-v0.1")
13
-
 
 
 
 
 
14
  user_input = st.text_area("Enter your instruction", "Explain Machine Learning to me in a nutshell.")
15
  max_tokens = st.slider("Max Tokens", min_value=10, max_value=500, value=64)
16
  temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7)
17
 
18
  if st.button("Generate"):
19
  with st.spinner("Generating response..."):
20
- result = generate_response(user_input, mistral_models_path, max_tokens, temperature)
21
  st.success("Response generated!")
22
  st.text_area("Generated Response", result, height=200)
23
 
24
- def generate_response(user_input, model_path, max_tokens, temperature):
25
- tokenizer = MistralTokenizer.v3()
26
- completion_request = ChatCompletionRequest(messages=[UserMessage(content=user_input)])
27
- tokens = tokenizer.encode_chat_completion(completion_request).tokens
28
-
29
- model = Transformer.from_folder(model_path)
30
- out_tokens, _ = generate([tokens], model, max_tokens=max_tokens, temperature=temperature, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
31
-
32
- result = tokenizer.decode(out_tokens[0])
33
  return result
34
 
35
  if __name__ == "__main__":
36
  main()
37
-
 
1
  import streamlit as st
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
3
 
4
  def main():
5
  st.title("Codestral Inference with Hugging Face")
6
 
7
+ # Load the model and tokenizer
8
+ st.text("Loading model...")
9
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Codestral-22B-v0.1")
10
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Codestral-22B-v0.1")
11
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
12
+ st.success("Model loaded successfully!")
13
+
14
  user_input = st.text_area("Enter your instruction", "Explain Machine Learning to me in a nutshell.")
15
  max_tokens = st.slider("Max Tokens", min_value=10, max_value=500, value=64)
16
  temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7)
17
 
18
  if st.button("Generate"):
19
  with st.spinner("Generating response..."):
20
+ result = generate_response(generator, user_input, max_tokens, temperature)
21
  st.success("Response generated!")
22
  st.text_area("Generated Response", result, height=200)
23
 
24
+ def generate_response(generator, user_input, max_tokens, temperature):
25
+ response = generator(user_input, max_new_tokens=max_tokens, do_sample=True, temperature=temperature)
26
+ result = response[0]['generated_text']
 
 
 
 
 
 
27
  return result
28
 
29
  if __name__ == "__main__":
30
  main()