Spaces:
Sleeping
Sleeping
File size: 7,977 Bytes
3b83957 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
# Define course outlines
phy504 = """
# PHY 504: Classical Mechanics (Advanced Mechanics)
This course focuses on a detailed and sophisticated approach to classical mechanics, emphasizing mathematical methods and applications to physical systems.
## Outline:
1. **Lagrangian Mechanics**
- Principle of least action
- Euler-Lagrange equations
- Constraints and generalized coordinates
2. **Variational Principles**
- Hamilton's principle
- Symmetries and Noether’s theorem
3. **Hamiltonian Mechanics**
- Hamilton’s equations of motion
- Canonical transformations
4. **Phase Space and Liouville's Theorem**
- Phase space flow and conservation
5. **Central Force Problems**
- Orbital mechanics
- Scattering in central forces
6. **Small Oscillations**
- Normal modes
- Perturbation methods
7. **Rigid Body Dynamics**
- Euler angles and rotational motion
- Inertia tensors and principal axes
- Gyroscopic motion
8. **Nonlinear Dynamics and Chaos**
- Bifurcation theory
- Lyapunov exponents
- Poincaré maps
9. **Relativistic Mechanics**
- Lorentz transformations and four-vectors
- Action for relativistic particles
"""
phy611 = """
# PHY 611: Quantum Mechanics I
This course provides a rigorous foundation in quantum theory, with a focus on the mathematical formalism and physical interpretation.
## Outline:
1. **Mathematical Foundations of Quantum Mechanics**
- Hilbert spaces and operators
- Eigenvalue problems
- Dirac notation
2. **Postulates of Quantum Mechanics**
- State vectors and observables
- Measurement postulates
- Time evolution of quantum states
3. **Harmonic Oscillator and Operator Methods**
- Creation and annihilation operators
- Ladder operator techniques
- Coherent states
4. **Angular Momentum**
- Commutation relations
- Spin and orbital angular momentum
- Addition of angular momenta
5. **Symmetry in Quantum Mechanics**
- Group theory applications
- Parity, time reversal, and charge conjugation
- Conservation laws and symmetries
6. **Approximation Methods**
- Time-independent perturbation theory
- Variational methods
- WKB approximation
7. **Quantum Systems in External Fields**
- Magnetic fields and the Aharonov-Bohm effect
- Stark and Zeeman effects
8. **Scattering Theory**
- Partial wave analysis
- Born approximation
- Cross sections and scattering amplitudes
9. **Path Integral Formulation of Quantum Mechanics**
- Feynman path integrals
- Applications to quantum field theory
"""
phy613 = """
# PHY 613: Statistical Physics
This course covers the statistical description of systems with many degrees of freedom, focusing on both equilibrium and non-equilibrium phenomena.
## Outline:
1. **Review of Thermodynamics**
- Laws of thermodynamics
- Thermodynamic potentials
- Phase transitions and critical phenomena
2. **Microcanonical, Canonical, and Grand Canonical Ensembles**
- Partition functions and thermodynamic properties
- Connections between ensembles
- Quantum statistics: Bose-Einstein and Fermi-Dirac distributions
3. **Statistical Ensembles and Entropy**
- Entropy as a measure of disorder
- Gibbs entropy formula
- Boltzmann distribution
4. **Ideal and Interacting Gases**
- Classical ideal gas
- Quantum ideal gases (Bose and Fermi gases)
- Virial expansion and interactions
5. **Phase Transitions**
- Landau theory
- Critical exponents and universality
- Renormalization group theory
6. **Non-equilibrium Statistical Mechanics**
- Boltzmann equation
- Langevin and Fokker-Planck equations
- Brownian motion
7. **Fluctuations and Response Theory**
- Fluctuation-dissipation theorem
- Linear response theory
- Kubo formalism
"""
phy614 = """
# PHY 614: Electromagnetism I (Electromagnetic Theory I)
This course covers the fundamentals of electromagnetic theory, with a deep dive into Maxwell's equations and their applications.
## Outline:
1. **Maxwell’s Equations**
- Integral and differential forms
- Boundary conditions
- Continuity equation and gauge invariance
2. **Electrostatics**
- Poisson’s and Laplace’s equations
- Green’s functions and boundary value problems
- Multipole expansions
3. **Magnetostatics**
- Biot-Savart law
- Vector potentials
- Magnetic dipoles and multipoles
4. **Electromagnetic Waves**
- Plane waves in vacuum and matter
- Reflection, refraction, and polarization
- Waveguides and cavities
5. **Radiation from Moving Charges**
- Lienard-Wiechert potentials
- Dipole and quadrupole radiation
- Synchrotron and bremsstrahlung radiation
6. **Special Relativity and Electromagnetism**
- Lorentz transformations
- Covariant formulation of electromagnetism
- Relativistic kinematics and dynamics
7. **Electromagnetic Field in Matter**
- Polarization and magnetization
- Boundary conditions at interfaces
- Electromagnetic waves in dispersive and conducting media
"""
phy615 = """
# PHY 615: Quantum Mechanics II
This advanced course in quantum mechanics delves into more complex quantum systems, focusing on applications and advanced techniques.
## Outline:
1. **Review of Quantum Mechanics I**
- Key principles and formalism
- Advanced applications of harmonic oscillator
2. **Advanced Scattering Theory**
- S-matrix and optical theorem
- Scattering in three dimensions
- Coulomb scattering and partial waves
3. **Relativistic Quantum Mechanics**
- Klein-Gordon and Dirac equations
- Spin-1/2 particles and relativistic wave equations
- Zitterbewegung and antiparticles
4. **Quantum Field Theory Basics**
- Quantization of fields
- Path integrals in field theory
- Interaction picture and perturbation theory
5. **Quantum Electrodynamics (QED)**
- Feynman diagrams and rules
- Renormalization and gauge symmetry
- Applications to atomic physics
6. **Symmetry and Group Theory in Quantum Mechanics**
- Lie groups and Lie algebras
- Representations of symmetry groups
- Wigner-Eckart theorem and selection rules
7. **Many-Body Quantum Mechanics**
- Second quantization formalism
- Hartree-Fock method
- Bose-Einstein condensation and fermionic systems
"""
phy632 = """
# PHY 632: Advanced Topics in Theoretical Physics
This course explores contemporary and cutting-edge topics in theoretical physics, often including current research trends and advanced mathematical methods.
## Outline:
1. **Quantum Field Theory II**
- Renormalization group theory
- Gauge theories and spontaneous symmetry breaking
- Anomalies and the Standard Model
2. **Supersymmetry**
- Supersymmetric quantum mechanics
- Superfields and superspace
- Applications to particle physics and string theory
3. **String Theory Basics**
- Bosonic strings and superstrings
- D-branes and dualities
- Holography and AdS/CFT correspondence
4. **Advanced General Relativity**
- Gravitational waves
- Black hole thermodynamics
- Cosmology and inflation
5. **Topological Quantum Field Theory**
- Chern-Simons theory
- Topological insulators and anyons
- Applications to condensed matter physics
6. **Nonperturbative Methods in Quantum Field Theory**
- Instantons and solitons
- Lattice gauge theory
- Large N expansion and dualities
7. **Quantum Computing and Quantum Information**
- Qubits and quantum gates
- Quantum algorithms and complexity
- Quantum error correction and entanglement entropy
"""
# Streamlit app to display the outlines
st.title("Graduate Physics Course Outlines")
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["PHY 504", "PHY 611", "PHY 613", "PHY 614", "PHY 615", "PHY 632"])
with tab1:
st.markdown(phy504)
with tab2:
st.markdown(phy611)
with tab3:
st.markdown(phy613)
with tab4:
st.markdown(phy614)
with tab5:
st.markdown(phy615)
with tab6:
st.markdown(phy632)
|