eaglelandsonce commited on
Commit
71b0c93
·
verified ·
1 Parent(s): 3b83957

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +187 -227
app.py CHANGED
@@ -1,241 +1,201 @@
1
  import streamlit as st
2
 
3
- # Define course outlines
4
- phy504 = """
5
- # PHY 504: Classical Mechanics (Advanced Mechanics)
6
- This course focuses on a detailed and sophisticated approach to classical mechanics, emphasizing mathematical methods and applications to physical systems.
7
-
8
- ## Outline:
9
- 1. **Lagrangian Mechanics**
10
- - Principle of least action
11
- - Euler-Lagrange equations
12
- - Constraints and generalized coordinates
13
- 2. **Variational Principles**
14
- - Hamilton's principle
15
- - Symmetries and Noether’s theorem
16
- 3. **Hamiltonian Mechanics**
17
- - Hamilton’s equations of motion
18
- - Canonical transformations
19
- 4. **Phase Space and Liouville's Theorem**
20
- - Phase space flow and conservation
21
- 5. **Central Force Problems**
22
- - Orbital mechanics
23
- - Scattering in central forces
24
- 6. **Small Oscillations**
25
- - Normal modes
26
- - Perturbation methods
27
- 7. **Rigid Body Dynamics**
28
- - Euler angles and rotational motion
29
- - Inertia tensors and principal axes
30
- - Gyroscopic motion
31
- 8. **Nonlinear Dynamics and Chaos**
32
- - Bifurcation theory
33
- - Lyapunov exponents
34
- - Poincaré maps
35
- 9. **Relativistic Mechanics**
36
- - Lorentz transformations and four-vectors
37
- - Action for relativistic particles
38
- """
39
-
40
- phy611 = """
41
- # PHY 611: Quantum Mechanics I
42
- This course provides a rigorous foundation in quantum theory, with a focus on the mathematical formalism and physical interpretation.
43
-
44
- ## Outline:
45
- 1. **Mathematical Foundations of Quantum Mechanics**
46
- - Hilbert spaces and operators
47
- - Eigenvalue problems
48
- - Dirac notation
49
- 2. **Postulates of Quantum Mechanics**
50
- - State vectors and observables
51
- - Measurement postulates
52
- - Time evolution of quantum states
53
- 3. **Harmonic Oscillator and Operator Methods**
54
- - Creation and annihilation operators
55
- - Ladder operator techniques
56
- - Coherent states
57
- 4. **Angular Momentum**
58
- - Commutation relations
59
- - Spin and orbital angular momentum
60
- - Addition of angular momenta
61
- 5. **Symmetry in Quantum Mechanics**
62
- - Group theory applications
63
- - Parity, time reversal, and charge conjugation
64
- - Conservation laws and symmetries
65
- 6. **Approximation Methods**
66
- - Time-independent perturbation theory
67
- - Variational methods
68
- - WKB approximation
69
- 7. **Quantum Systems in External Fields**
70
- - Magnetic fields and the Aharonov-Bohm effect
71
- - Stark and Zeeman effects
72
- 8. **Scattering Theory**
73
- - Partial wave analysis
74
- - Born approximation
75
- - Cross sections and scattering amplitudes
76
- 9. **Path Integral Formulation of Quantum Mechanics**
77
- - Feynman path integrals
78
- - Applications to quantum field theory
79
- """
80
-
81
- phy613 = """
82
- # PHY 613: Statistical Physics
83
- This course covers the statistical description of systems with many degrees of freedom, focusing on both equilibrium and non-equilibrium phenomena.
84
-
85
- ## Outline:
86
- 1. **Review of Thermodynamics**
87
- - Laws of thermodynamics
88
- - Thermodynamic potentials
89
- - Phase transitions and critical phenomena
90
- 2. **Microcanonical, Canonical, and Grand Canonical Ensembles**
91
- - Partition functions and thermodynamic properties
92
- - Connections between ensembles
93
- - Quantum statistics: Bose-Einstein and Fermi-Dirac distributions
94
- 3. **Statistical Ensembles and Entropy**
95
- - Entropy as a measure of disorder
96
- - Gibbs entropy formula
97
- - Boltzmann distribution
98
- 4. **Ideal and Interacting Gases**
99
- - Classical ideal gas
100
- - Quantum ideal gases (Bose and Fermi gases)
101
- - Virial expansion and interactions
102
- 5. **Phase Transitions**
103
- - Landau theory
104
- - Critical exponents and universality
105
- - Renormalization group theory
106
- 6. **Non-equilibrium Statistical Mechanics**
107
- - Boltzmann equation
108
- - Langevin and Fokker-Planck equations
109
- - Brownian motion
110
- 7. **Fluctuations and Response Theory**
111
- - Fluctuation-dissipation theorem
112
- - Linear response theory
113
- - Kubo formalism
114
- """
115
-
116
- phy614 = """
117
- # PHY 614: Electromagnetism I (Electromagnetic Theory I)
118
- This course covers the fundamentals of electromagnetic theory, with a deep dive into Maxwell's equations and their applications.
119
-
120
- ## Outline:
121
- 1. **Maxwell’s Equations**
122
- - Integral and differential forms
123
- - Boundary conditions
124
- - Continuity equation and gauge invariance
125
- 2. **Electrostatics**
126
- - Poisson’s and Laplace’s equations
127
- - Green’s functions and boundary value problems
128
- - Multipole expansions
129
- 3. **Magnetostatics**
130
- - Biot-Savart law
131
- - Vector potentials
132
- - Magnetic dipoles and multipoles
133
- 4. **Electromagnetic Waves**
134
- - Plane waves in vacuum and matter
135
- - Reflection, refraction, and polarization
136
- - Waveguides and cavities
137
- 5. **Radiation from Moving Charges**
138
- - Lienard-Wiechert potentials
139
- - Dipole and quadrupole radiation
140
- - Synchrotron and bremsstrahlung radiation
141
- 6. **Special Relativity and Electromagnetism**
142
- - Lorentz transformations
143
- - Covariant formulation of electromagnetism
144
- - Relativistic kinematics and dynamics
145
- 7. **Electromagnetic Field in Matter**
146
- - Polarization and magnetization
147
- - Boundary conditions at interfaces
148
- - Electromagnetic waves in dispersive and conducting media
149
- """
150
-
151
- phy615 = """
152
- # PHY 615: Quantum Mechanics II
153
- This advanced course in quantum mechanics delves into more complex quantum systems, focusing on applications and advanced techniques.
154
-
155
- ## Outline:
156
- 1. **Review of Quantum Mechanics I**
157
- - Key principles and formalism
158
- - Advanced applications of harmonic oscillator
159
- 2. **Advanced Scattering Theory**
160
- - S-matrix and optical theorem
161
- - Scattering in three dimensions
162
- - Coulomb scattering and partial waves
163
- 3. **Relativistic Quantum Mechanics**
164
- - Klein-Gordon and Dirac equations
165
- - Spin-1/2 particles and relativistic wave equations
166
- - Zitterbewegung and antiparticles
167
- 4. **Quantum Field Theory Basics**
168
- - Quantization of fields
169
- - Path integrals in field theory
170
- - Interaction picture and perturbation theory
171
- 5. **Quantum Electrodynamics (QED)**
172
- - Feynman diagrams and rules
173
- - Renormalization and gauge symmetry
174
- - Applications to atomic physics
175
- 6. **Symmetry and Group Theory in Quantum Mechanics**
176
- - Lie groups and Lie algebras
177
- - Representations of symmetry groups
178
- - Wigner-Eckart theorem and selection rules
179
- 7. **Many-Body Quantum Mechanics**
180
- - Second quantization formalism
181
- - Hartree-Fock method
182
- - Bose-Einstein condensation and fermionic systems
183
- """
184
-
185
- phy632 = """
186
- # PHY 632: Advanced Topics in Theoretical Physics
187
- This course explores contemporary and cutting-edge topics in theoretical physics, often including current research trends and advanced mathematical methods.
188
-
189
- ## Outline:
190
- 1. **Quantum Field Theory II**
191
- - Renormalization group theory
192
- - Gauge theories and spontaneous symmetry breaking
193
- - Anomalies and the Standard Model
194
- 2. **Supersymmetry**
195
- - Supersymmetric quantum mechanics
196
- - Superfields and superspace
197
- - Applications to particle physics and string theory
198
- 3. **String Theory Basics**
199
- - Bosonic strings and superstrings
200
- - D-branes and dualities
201
- - Holography and AdS/CFT correspondence
202
- 4. **Advanced General Relativity**
203
- - Gravitational waves
204
- - Black hole thermodynamics
205
- - Cosmology and inflation
206
- 5. **Topological Quantum Field Theory**
207
- - Chern-Simons theory
208
- - Topological insulators and anyons
209
- - Applications to condensed matter physics
210
- 6. **Nonperturbative Methods in Quantum Field Theory**
211
- - Instantons and solitons
212
- - Lattice gauge theory
213
- - Large N expansion and dualities
214
- 7. **Quantum Computing and Quantum Information**
215
- - Qubits and quantum gates
216
- - Quantum algorithms and complexity
217
- - Quantum error correction and entanglement entropy
218
- """
219
-
220
- # Streamlit app to display the outlines
221
- st.title("Graduate Physics Course Outlines")
222
-
223
- tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["PHY 504", "PHY 611", "PHY 613", "PHY 614", "PHY 615", "PHY 632"])
224
 
225
  with tab1:
226
- st.markdown(phy504)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
  with tab2:
229
- st.markdown(phy611)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
 
231
  with tab3:
232
- st.markdown(phy613)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
 
234
  with tab4:
235
- st.markdown(phy614)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
 
237
  with tab5:
238
- st.markdown(phy615)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239
 
240
  with tab6:
241
- st.markdown(phy632)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
 
3
+ # Set page title and header
4
+ st.title("Graduate Physics Course Syllabi")
5
+ st.write("### Course Outlines for PHY 504, PHY 611, PHY 613, PHY 614, PHY 615, and PHY 632")
6
+
7
+ # Tabs for each course
8
+ tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["PHY 504: Advanced Mechanics",
9
+ "PHY 611: Electromagnetic Theory I",
10
+ "PHY 613: Electromagnetic Theory II",
11
+ "PHY 614: Quantum Mechanics I",
12
+ "PHY 615: Quantum Mechanics II",
13
+ "PHY 632: Statistical Mechanics"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  with tab1:
16
+ st.markdown("""
17
+ ## PHY 504: Advanced Mechanics
18
+ **Credits**: 3
19
+ **Prerequisites**: PHY 404G, MA 214
20
+
21
+ **Course Description**
22
+ This course extends the foundational principles learned in classical mechanics, focusing on advanced topics such as the dynamics of particles, rigid bodies, Lagrangian and Hamiltonian mechanics, constrained motions, and small oscillations. Applications will include modern techniques used in the study of chaotic systems and continuous media.
23
+
24
+ **Course Objectives**
25
+ - Understand and apply Lagrangian and Hamiltonian mechanics.
26
+ - Analyze mechanical systems with constraints.
27
+ - Solve problems involving small oscillations and rigid body dynamics.
28
+ - Apply advanced mechanics to real-world problems and chaotic systems.
29
+
30
+ **Weekly Outline**
31
+ - **Week 1-2**: Review of Newtonian Mechanics and Introduction to Variational Principles
32
+ - **Week 3**: Lagrangian Mechanics: Generalized Coordinates, Lagrange's Equations
33
+ - **Week 4**: Constraints: Types, Generalized Forces
34
+ - **Week 5**: Rigid Body Motion: Euler Angles and Equations
35
+ - **Week 6**: Hamiltonian Mechanics and Canonical Transformations
36
+ - **Week 7**: Poisson Brackets and Hamilton-Jacobi Theory
37
+ - **Week 8**: Action-Angle Variables
38
+ - **Week 9-10**: Small Oscillations and Normal Modes
39
+ - **Week 11-12**: Chaotic Systems: An Introduction
40
+ - **Week 13-14**: Advanced Topics in Mechanics (Fluid Dynamics, Plasma Physics)
41
+ - **Week 15**: Review and Final Exam Preparation
42
+
43
+ **Textbooks**
44
+ - "Classical Mechanics" by Herbert Goldstein, Charles Poole, and John Safko
45
+ - "Mechanics: Volume 1 (Course of Theoretical Physics)" by L.D. Landau and E.M. Lifshitz
46
+ """)
47
 
48
  with tab2:
49
+ st.markdown("""
50
+ ## PHY 611: Electromagnetic Theory I
51
+ **Credits**: 3
52
+ **Prerequisites**: PHY 416G, MA 214
53
+
54
+ **Course Description**
55
+ This course covers the fundamentals of electromagnetism, including electrostatics, boundary value problems, potential theory, energy in electromagnetic fields, and Maxwell's equations.
56
+
57
+ **Course Objectives**
58
+ - Apply Maxwell’s equations to a wide range of physical systems.
59
+ - Solve boundary value problems in electrostatics and magnetostatics.
60
+ - Analyze the behavior of electromagnetic waves in different media.
61
+
62
+ **Weekly Outline**
63
+ - **Week 1-2**: Introduction to Electrostatics: Gauss’s Law, Electric Field, and Potential
64
+ - **Week 3-4**: Solutions to Laplace’s Equation: Separation of Variables, Multipole Expansion
65
+ - **Week 5-6**: Conductors and Dielectrics in Electrostatic Fields
66
+ - **Week 7-8**: Magnetostatics: Ampère’s Law, Vector Potential
67
+ - **Week 9**: Maxwell’s Equations and Energy in Electromagnetic Fields
68
+ - **Week 10-11**: Electromagnetic Waves: Wave Equations, Energy and Momentum
69
+ - **Week 12**: Reflection and Transmission of Electromagnetic Waves
70
+ - **Week 13**: Special Relativity and Electromagnetism
71
+ - **Week 14**: Radiation: Dipole Radiation and Scattering
72
+ - **Week 15**: Review and Final Exam Preparation
73
+
74
+ **Textbooks**
75
+ - "Classical Electrodynamics" by John David Jackson
76
+ - "Introduction to Electrodynamics" by David J. Griffiths
77
+ """)
78
 
79
  with tab3:
80
+ st.markdown("""
81
+ ## PHY 613: Electromagnetic Theory II
82
+ **Credits**: 3
83
+ **Prerequisites**: PHY 611
84
+
85
+ **Course Description**
86
+ This course builds upon Electromagnetic Theory I and focuses on advanced topics in electromagnetism, including electromagnetic wave propagation, optical phenomena, radiation theory, and the covariant formulation of Maxwell’s equations.
87
+
88
+ **Course Objectives**
89
+ - Understand the theory of electromagnetic waves.
90
+ - Analyze the interaction of electromagnetic radiation with matter.
91
+ - Apply the covariant formulation of Maxwell’s equations.
92
+
93
+ **Weekly Outline**
94
+ - **Week 1**: Review of Maxwell’s Equations
95
+ - **Week 2-3**: Electromagnetic Wave Propagation: Polarization, Dispersion
96
+ - **Week 4-5**: Waveguides and Resonant Cavities
97
+ - **Week 6**: Optical Phenomena: Interference, Diffraction, and Polarization
98
+ - **Week 7-8**: Electromagnetic Radiation: Retarded Potentials, Lienard-Wiechert Potentials
99
+ - **Week 9**: Radiation from Moving Charges
100
+ - **Week 10-11**: Special Relativity and the Covariant Formulation of Maxwell’s Equations
101
+ - **Week 12-13**: Applications of Electromagnetic Theory to Modern Physics
102
+ - **Week 14**: Advanced Topics: Plasma Physics and Magnetohydrodynamics
103
+ - **Week 15**: Review and Final Exam
104
+
105
+ **Textbooks**
106
+ - "Classical Electrodynamics" by John David Jackson
107
+ - "Introduction to Electrodynamics" by David J. Griffiths
108
+ """)
109
 
110
  with tab4:
111
+ st.markdown("""
112
+ ## PHY 614: Quantum Mechanics I
113
+ **Credits**: 3
114
+ **Prerequisites**: PHY 520
115
+
116
+ **Course Description**
117
+ An introduction to the fundamental principles and formalism of quantum mechanics, covering wave mechanics, the Schrödinger equation, angular momentum, and approximation methods. Applications to atomic and molecular systems will be discussed.
118
+
119
+ **Course Objectives**
120
+ - Understand the formalism of quantum mechanics.
121
+ - Solve the Schrödinger equation for various potentials.
122
+ - Apply quantum mechanics to model atomic and molecular systems.
123
+
124
+ **Weekly Outline**
125
+ - **Week 1-2**: Introduction to Quantum Mechanics and the Schrödinger Equation
126
+ - **Week 3-4**: Operators, Eigenvalues, and Measurement Theory
127
+ - **Week 5-6**: The Harmonic Oscillator
128
+ - **Week 7**: Angular Momentum and Spin
129
+ - **Week 8-9**: The Hydrogen Atom
130
+ - **Week 10-11**: Approximation Methods: Time-Independent Perturbation Theory
131
+ - **Week 12-13**: Variational Principle and WKB Approximation
132
+ - **Week 14**: Identical Particles and Symmetry
133
+ - **Week 15**: Review and Final Exam Preparation
134
+
135
+ **Textbooks**
136
+ - "Principles of Quantum Mechanics" by R. Shankar
137
+ - "Modern Quantum Mechanics" by J. J. Sakurai and Jim Napolitano
138
+ """)
139
 
140
  with tab5:
141
+ st.markdown("""
142
+ ## PHY 615: Quantum Mechanics II
143
+ **Credits**: 3
144
+ **Prerequisites**: PHY 614
145
+
146
+ **Course Description**
147
+ This course builds on Quantum Mechanics I, delving deeper into perturbation theory, scattering theory, symmetry, and invariance. Time-dependent quantum phenomena and applications to complex systems will be covered.
148
+
149
+ **Course Objectives**
150
+ - Understand time-dependent perturbation theory.
151
+ - Apply quantum mechanics to scattering problems.
152
+ - Explore symmetry and invariance in quantum systems.
153
+
154
+ **Weekly Outline**
155
+ - **Week 1**: Review of Quantum Mechanics I
156
+ - **Week 2-3**: Time-Dependent Perturbation Theory
157
+ - **Week 4**: Fermi’s Golden Rule and Transition Rates
158
+ - **Week 5-6**: Scattering Theory: Born Approximation, Partial Waves
159
+ - **Week 7**: Symmetry and Conservation Laws
160
+ - **Week 8-9**: Quantum Mechanics of Identical Particles
161
+ - **Week 10-11**: Applications to Atomic and Molecular Systems
162
+ - **Week 12-13**: Quantum Field Theory
163
+ - **Week 14**: Open Quantum Systems and Decoherence
164
+ - **Week 15**: Review and Final Exam
165
+
166
+ **Textbooks**
167
+ - "Modern Quantum Mechanics" by J. J. Sakurai and Jim Napolitano
168
+ - "Quantum Mechanics: Concepts and Applications" by Nouredine Zettili
169
+ """)
170
 
171
  with tab6:
172
+ st.markdown("""
173
+ ## PHY 632: Statistical Mechanics
174
+ **Credits**: 3
175
+ **Prerequisites**: PHY 504, PHY 520, PHY 522
176
+
177
+ **Course Description**
178
+ This course provides an in-depth exploration of the principles of statistical mechanics and their applications to thermodynamics and various physical systems. Topics include thermodynamic description of matter, perfect gases, and quantum statistics.
179
+
180
+ **Course Objectives**
181
+ - Understand the connection between statistical mechanics and thermodynamics.
182
+ - Solve problems involving classical and quantum statistical systems.
183
+ - Apply statistical mechanics to real-world physical systems.
184
+
185
+ **Weekly Outline**
186
+ - **Week 1**: Introduction to Statistical Mechanics and Thermodynamics
187
+ - **Week 2-3**: Microcanonical Ensemble and Classical Thermodynamics
188
+ - **Week 4-5**: Canonical Ensemble: Partition Functions, Thermodynamic Quantities
189
+ - **Week 6-7**: Grand Canonical Ensemble: Applications to Gases
190
+ - **Week 8**: Quantum Statistical Mechanics: Bose-Einstein and Fermi-Dirac Statistics
191
+ - **Week 9-10**: Ideal Gases: Classical and Quantum Regimes
192
+ - **Week 11**: Blackbody Radiation and Photon Gas
193
+ - **Week 12**: Non-Ideal Systems: Interacting Gases and Phase Transitions
194
+ - **Week 13-14**: Advanced Topics: Critical Phenomena, Renormalization
195
+ - **Week 15**: Review and Final Exam Preparation
196
+
197
+ **Textbooks**
198
+ - "Statistical Mechanics" by R.K. Pathria and Paul D. Beale
199
+ - "Statistical Physics: Volume 5 (Course of Theoretical Physics)" by L.D. Landau and E.M. Lifshitz
200
+ """)
201
+