Update app.py
Browse files
app.py
CHANGED
@@ -110,7 +110,66 @@ result = simulator.run(compiled_circuit, shots=1024).result()
|
|
110 |
counts = result.get_counts()
|
111 |
print(counts)
|
112 |
""",
|
113 |
-
"8.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
from qiskit import QuantumCircuit, transpile
|
115 |
from qiskit_aer import AerSimulator
|
116 |
from qiskit.circuit.library import GroverOperator
|
|
|
110 |
counts = result.get_counts()
|
111 |
print(counts)
|
112 |
""",
|
113 |
+
"8. QUBO": """
|
114 |
+
|
115 |
+
import numpy as np
|
116 |
+
|
117 |
+
# Qiskit / Qiskit Optimization imports
|
118 |
+
from qiskit import Aer
|
119 |
+
from qiskit.utils import QuantumInstance
|
120 |
+
from qiskit.algorithms import QAOA
|
121 |
+
from qiskit.algorithms.optimizers import SPSA
|
122 |
+
from qiskit_optimization import QuadraticProgram
|
123 |
+
from qiskit_optimization.algorithms import MinimumEigenOptimizer
|
124 |
+
|
125 |
+
# 1) Define a small QUBO with two binary variables
|
126 |
+
problem = QuadraticProgram("my_qubo")
|
127 |
+
problem.binary_var("x0")
|
128 |
+
problem.binary_var("x1")
|
129 |
+
|
130 |
+
# Objective: minimize H = x0 + 2*x1 + (1)*x0*x1
|
131 |
+
# - linear coefficients => x0: 1, x1: 2
|
132 |
+
# - quadratic coefficient => (x0, x1): 1
|
133 |
+
problem.minimize(
|
134 |
+
linear={"x0": 1, "x1": 2},
|
135 |
+
quadratic={("x0", "x1"): 1}
|
136 |
+
)
|
137 |
+
|
138 |
+
# Print to confirm the problem is not empty
|
139 |
+
print("\n--- Quadratic Program ---")
|
140 |
+
print(problem.export_as_lp_string())
|
141 |
+
|
142 |
+
# 2) Set up a QAOA solver on the qasm_simulator
|
143 |
+
backend = Aer.get_backend('qasm_simulator')
|
144 |
+
|
145 |
+
# Configure the quantum instance
|
146 |
+
quantum_instance = QuantumInstance(
|
147 |
+
backend=backend,
|
148 |
+
shots=512,
|
149 |
+
seed_simulator=42,
|
150 |
+
seed_transpiler=42
|
151 |
+
)
|
152 |
+
|
153 |
+
# Create a QAOA instance
|
154 |
+
qaoa = QAOA(
|
155 |
+
optimizer=SPSA(maxiter=50), # or COBYLA(), NFT(), etc.
|
156 |
+
reps=2, # Number of QAOA layers
|
157 |
+
quantum_instance=quantum_instance
|
158 |
+
)
|
159 |
+
|
160 |
+
# Wrap QAOA in a MinimumEigenOptimizer
|
161 |
+
solver = MinimumEigenOptimizer(qaoa)
|
162 |
+
|
163 |
+
# 3) Solve the QUBO
|
164 |
+
result = solver.solve(problem)
|
165 |
+
|
166 |
+
# Print results
|
167 |
+
print("\n--- QAOA Results ---")
|
168 |
+
print("Optimal solution:", result.x)
|
169 |
+
print("Objective value:", result.fval)
|
170 |
+
|
171 |
+
""",
|
172 |
+
"9. DNA Sequence Matching with Grover's Algorithm": """
|
173 |
from qiskit import QuantumCircuit, transpile
|
174 |
from qiskit_aer import AerSimulator
|
175 |
from qiskit.circuit.library import GroverOperator
|