eaglelandsonce commited on
Commit
3c9d3d2
·
verified ·
1 Parent(s): 61ff057

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -1
app.py CHANGED
@@ -96,7 +96,93 @@ result = simulator.run(compiled_circuit, shots=1024).result()
96
  counts = result.get_counts()
97
  print(counts)
98
  """,
99
- # Add more examples here, progressively getting more complex
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  }
101
 
102
  # Selection menu for examples
 
96
  counts = result.get_counts()
97
  print(counts)
98
  """,
99
+ "7. DNA Base Pair Encoding": """
100
+ from qiskit import QuantumCircuit
101
+ qc = QuantumCircuit(2, 2)
102
+
103
+ # DNA Base Pair Encoding: A -> 00, T -> 01, G -> 10, C -> 11
104
+ qc.x(0) # Example encoding for T (01)
105
+ qc.measure([0, 1], [0, 1])
106
+
107
+ simulator = AerSimulator()
108
+ compiled_circuit = transpile(qc, simulator)
109
+ result = simulator.run(compiled_circuit, shots=1024).result()
110
+ counts = result.get_counts()
111
+ print(counts)
112
+ """,
113
+ "8. DNA Sequence Matching with Grover's Algorithm": """
114
+ from qiskit import QuantumCircuit, Aer
115
+ from qiskit_aer import AerSimulator
116
+ from qiskit.circuit.library import GroverOperator
117
+ from qiskit.algorithms import AmplificationProblem
118
+
119
+ # Oracle marks the target sequence
120
+ def oracle(circuit):
121
+ circuit.cz(0, 1) # Mark sequence 01 as a solution
122
+
123
+ qc = QuantumCircuit(2)
124
+ oracle(qc)
125
+
126
+ # Grover search for the sequence
127
+ problem = AmplificationProblem(qc)
128
+ grover_circuit = GroverOperator(problem)
129
+ simulator = AerSimulator()
130
+
131
+ compiled_circuit = transpile(grover_circuit, simulator)
132
+ result = simulator.run(compiled_circuit, shots=1024).result()
133
+ counts = result.get_counts()
134
+ print(counts)
135
+ """,
136
+ "9. Genetic Variant Interaction": """
137
+ from qiskit import QuantumCircuit, Aer
138
+ from qiskit_aer import AerSimulator
139
+
140
+ # Genetic variants as entangled qubits
141
+ qc = QuantumCircuit(2, 2)
142
+ qc.h(0) # Variant 1 in superposition
143
+ qc.cx(0, 1) # Entangle with Variant 2
144
+ qc.measure([0, 1], [0, 1])
145
+
146
+ simulator = AerSimulator()
147
+ compiled_circuit = transpile(qc, simulator)
148
+ result = simulator.run(compiled_circuit, shots=1024).result()
149
+ counts = result.get_counts()
150
+ print(counts)
151
+ """,
152
+ "10. DNA Alignment Scoring": """
153
+ from qiskit import QuantumCircuit, Aer
154
+ from qiskit_aer import AerSimulator
155
+
156
+ # Create a Quantum Circuit for DNA alignment
157
+ qc = QuantumCircuit(3, 3)
158
+
159
+ # Simulate possible alignments with superposition
160
+ qc.h([0, 1, 2]) # 3 alignments in parallel
161
+ qc.measure([0, 1, 2], [0, 1, 2])
162
+
163
+ simulator = AerSimulator()
164
+ compiled_circuit = transpile(qc, simulator)
165
+ result = simulator.run(compiled_circuit, shots=1024).result()
166
+ counts = result.get_counts()
167
+ print(counts)
168
+ """,
169
+ "11. Protein Folding Simulation with QAOA": """
170
+ from qiskit import Aer, QuantumCircuit
171
+ from qiskit.algorithms.optimizers import COBYLA
172
+ from qiskit_aer import AerSimulator
173
+ from qiskit.algorithms.minimum_eigensolvers import QAOA
174
+ from qiskit.circuit.library import TwoLocal
175
+
176
+ # Build a QAOA circuit for protein folding
177
+ p = 1
178
+ ansatz = TwoLocal(2, "ry", "cz", reps=p)
179
+ qaoa = QAOA(ansatz=ansatz, optimizer=COBYLA())
180
+
181
+ # Simulate energy minimization
182
+ simulator = AerSimulator()
183
+ qaoa_result = qaoa.compute_minimum_eigenvalue(operator=None)
184
+ print(qaoa_result)
185
+ """
186
  }
187
 
188
  # Selection menu for examples