File size: 7,599 Bytes
5dce9ae
 
 
e0317e5
 
5dce9ae
 
 
 
e0317e5
5dce9ae
 
 
 
 
 
e0317e5
5dce9ae
 
e0317e5
5dce9ae
 
 
e0317e5
5dce9ae
 
 
 
 
 
 
 
 
 
 
 
 
e0317e5
5dce9ae
 
 
9568bdf
5dce9ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0317e5
5dce9ae
 
 
 
 
 
e0317e5
 
 
 
 
5dce9ae
 
 
 
 
 
 
 
 
 
e0317e5
5dce9ae
 
e0317e5
5dce9ae
 
 
e0317e5
5dce9ae
e0317e5
5dce9ae
 
 
 
e0317e5
5dce9ae
 
e0317e5
5dce9ae
 
 
 
 
e0317e5
5dce9ae
 
 
e0317e5
5dce9ae
 
 
 
 
e0317e5
5dce9ae
 
 
 
 
e0317e5
5dce9ae
 
 
 
e0317e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9568bdf
ebab5b4
e0317e5
 
 
9568bdf
e0317e5
 
 
 
 
9568bdf
 
 
 
 
 
 
 
e0317e5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import streamlit.components.v1 as components

# ===============================
# Streamlit Interface Setup
# ===============================
st.title("Spin Launch & Orbital Attachment Simulation (Animated)")

st.markdown(
    """
    This simulation demonstrates a two‑phase launch:
    
    1. **Spin‑Launch Phase:** A payload is accelerated from an elevated platform.
    2. **Orbital Phase:** At a specified altitude, the payload “docks” with a human‑rated upper stage by
       instantly setting its velocity to that of a circular orbit.
       
    Adjust the parameters on the sidebar and click **Run Simulation**.
    """
)

# Sidebar parameters for simulation:
st.sidebar.header("Simulation Parameters")

# Time and integration parameters:
dt = st.sidebar.number_input("Time Step (s)", min_value=0.01, max_value=1.0, value=0.1, step=0.01)
t_max = st.sidebar.number_input("Total Simulation Time (s)", min_value=100, max_value=5000, value=1000, step=100)

# Launch conditions:
initial_altitude_km = st.sidebar.number_input("Initial Altitude (km)", min_value=1, max_value=100, value=50, step=1)
initial_velocity = st.sidebar.number_input("Initial Velocity (m/s)", min_value=100, max_value=5000, value=1200, step=100)

# Docking/Orbital attachment altitude:
docking_altitude_km = st.sidebar.number_input("Docking Altitude (km)", min_value=1, max_value=500, value=100, step=1)

# Button to run simulation:
run_sim = st.sidebar.button("Run Simulation")

if run_sim:
    st.info("Running simulation... Please wait.")
    # ===============================
    # Physical Constants and Conversions
    # ===============================
    mu = 3.986e14       # Earth's gravitational parameter, m^3/s^2
    R_E = 6.371e6       # Earth's radius, m

    # Convert altitude values from km to m:
    initial_altitude = initial_altitude_km * 1000.0  # initial altitude above Earth's surface (m)
    docking_altitude = docking_altitude_km * 1000.0    # docking altitude above Earth's surface (m)
    r_dock = R_E + docking_altitude                    # docking radius from Earth's center (m)

    # ===============================
    # Initial Conditions for the Simulation
    # ===============================
    # Starting at a point along the x-axis at a radial distance (Earth's radius + initial altitude)
    initial_position = np.array([R_E + initial_altitude, 0.0])
    # Initial velocity is chosen to be radial (pointing outward) at the chosen speed.
    initial_velocity_vec = np.array([initial_velocity, 0.0])

    # ===============================
    # Define the Acceleration Function
    # ===============================
    def acceleration(pos):
        """Compute acceleration due to Earth's gravity at position pos (in m)."""
        r = np.linalg.norm(pos)
        return -mu * pos / r**3

    # ===============================
    # Run the Simulation Loop
    # ===============================
    # We'll record (time, x, y, phase)
    # phase = 1: spin‑launch phase
    # phase = 2: orbital phase (after docking)
    states = []     
    phase = 1
    t = 0.0
    pos = initial_position.copy()
    vel = initial_velocity_vec.copy()
    docking_done = False
    docking_event_time = None
    docking_event_coords = None

    while t < t_max:
        # --- Check for the Docking Event ---
        # When the payload's distance from Earth's center exceeds the docking radius
        # and it's still moving outward, trigger the docking event.
        if phase == 1 and not docking_done and np.linalg.norm(pos) >= r_dock and vel.dot(pos) > 0:
            docking_done = True
            phase = 2  # switch to orbital phase
            r_current = np.linalg.norm(pos)
            # Compute the circular orbital speed at the current radius:
            v_circ = np.sqrt(mu / r_current)
            # For a prograde orbit, choose a tangential (perpendicular) direction:
            tangential_dir = np.array([-pos[1], pos[0]]) / r_current
            vel = v_circ * tangential_dir  # instantaneous burn to circular orbit
            docking_event_time = t
            docking_event_coords = pos.copy()
            st.write(f"**Docking Event:** t = {t:.1f} s, Altitude = {(r_current - R_E)/1000:.1f} km, Circular Speed = {v_circ:.1f} m/s")
        
        # Record the current state: (time, x, y, phase)
        states.append((t, pos[0], pos[1], phase))
        
        # --- Propagate the State (Euler Integration) ---
        a = acceleration(pos)
        pos = pos + vel * dt
        vel = vel + a * dt
        t += dt

    # Convert the recorded states to a NumPy array for easier slicing.
    states = np.array(states)  # columns: time, x, y, phase

    # ===============================
    # Create the Animation Using Matplotlib
    # ===============================
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.set_aspect('equal')
    ax.set_xlabel("x (km)")
    ax.set_ylabel("y (km)")
    ax.set_title("Trajectory: Spin Launch & Orbital Attachment")

    # Draw Earth as a blue circle (Earth's radius in km)
    earth = plt.Circle((0, 0), R_E / 1000, color='blue', alpha=0.3, label="Earth")
    ax.add_artist(earth)

    # Set plot limits to show the trajectory (e.g., up to Earth's radius + 300 km)
    max_extent = (R_E + 300e3) / 1000  # in km
    ax.set_xlim(-max_extent, max_extent)
    ax.set_ylim(-max_extent, max_extent)

    # Initialize the trajectory line and payload marker for animation:
    trajectory_line, = ax.plot([], [], 'r-', lw=2, label="Trajectory")
    payload_marker, = ax.plot([], [], 'ko', markersize=5, label="Payload")
    time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes, fontsize=10)

    def init():
        trajectory_line.set_data([], [])
        payload_marker.set_data([], [])
        time_text.set_text('')
        return trajectory_line, payload_marker, time_text

    def update(frame):
        # Update the trajectory with all positions up to the current frame.
        t_val = states[frame, 0]
        x_vals = states[:frame+1, 1] / 1000  # convert m to km
        y_vals = states[:frame+1, 2] / 1000  # convert m to km
        trajectory_line.set_data(x_vals, y_vals)
        # Wrap coordinates in a list so that they are interpreted as sequences:
        payload_marker.set_data([states[frame, 1] / 1000], [states[frame, 2] / 1000])
        time_text.set_text(f"Time: {t_val:.1f} s")
        return trajectory_line, payload_marker, time_text

    # Create the animation. Adjust the interval (ms) for playback speed.
    anim = FuncAnimation(fig, update, frames=len(states), init_func=init, interval=20, blit=True)

    # Convert the animation to an HTML5 video.
    video_html = anim.to_html5_video()

    if video_html:
        st.markdown("### Simulation Animation")
        # Option 1: Use streamlit components to embed the HTML video
        components.html(video_html, height=500)
        # Option 2: Alternatively, use st.markdown (uncomment the following line to try it)
        # st.markdown(video_html, unsafe_allow_html=True)
    else:
        st.error("No video generated. Please ensure that ffmpeg is installed and properly configured.")

    st.markdown(
        """
        **Note:** This is a highly simplified simulation. In a real-world scenario, the spin‑launch, docking, 
        and orbital insertion phases would involve much more complex physics including aerodynamics, non‑instantaneous burns,
        and detailed guidance and control.
        """
    )