File size: 2,688 Bytes
028c091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, confusion_matrix
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

# Load Iris dataset
iris = load_iris()
X = iris.data
y = iris.target

# Only use the first two classes for binary classification
X = X[y != 2]
y = y[y != 2]

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Standardize the data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Build the logistic regression model using Keras
model = Sequential()
model.add(Dense(1, input_dim=4, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Train the model
model.fit(X_train, y_train, epochs=100, verbose=0)

# Predict and evaluate the model
y_pred_train = (model.predict(X_train) > 0.5).astype("int32")
y_pred_test = (model.predict(X_test) > 0.5).astype("int32")

train_accuracy = accuracy_score(y_train, y_pred_train)
test_accuracy = accuracy_score(y_test, y_pred_test)

conf_matrix = confusion_matrix(y_test, y_pred_test)

# Streamlit interface
st.title('Logistic Regression with Keras on Iris Dataset')

st.write('## Model Performance')
st.write(f'Training Accuracy: {train_accuracy:.2f}')
st.write(f'Testing Accuracy: {test_accuracy:.2f}')

st.write('## Confusion Matrix')
fig, ax = plt.subplots()
ax.matshow(conf_matrix, cmap=plt.cm.Blues, alpha=0.3)
for i in range(conf_matrix.shape[0]):
    for j in range(conf_matrix.shape[1]):
        ax.text(x=j, y=i, s=conf_matrix[i, j], va='center', ha='center')

plt.xlabel('Predicted Label')
plt.ylabel('True Label')
st.pyplot(fig)

st.write('## Make a Prediction')
sepal_length = st.number_input('Sepal Length (cm)', min_value=0.0, max_value=10.0, value=5.0)
sepal_width = st.number_input('Sepal Width (cm)', min_value=0.0, max_value=10.0, value=3.5)
petal_length = st.number_input('Petal Length (cm)', min_value=0.0, max_value=10.0, value=1.4)
petal_width = st.number_input('Petal Width (cm)', min_value=0.0, max_value=10.0, value=0.2)

if st.button('Predict'):
    input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
    input_data_scaled = scaler.transform(input_data)
    prediction = (model.predict(input_data_scaled) > 0.5).astype("int32")
    st.write(f'Prediction: {"Setosa" if prediction[0][0] == 0 else "Versicolor"}')