Spaces:
Sleeping
Sleeping
File size: 2,706 Bytes
397a225 f72133f 397a225 f72133f 397a225 f72133f 397a225 f72133f 397a225 f72133f 397a225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import streamlit as st
import numpy as np
import pandas as pd
import tensorflow as tf
from matplotlib import pyplot as plt
# Function to build the model
def build_model(my_learning_rate):
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units=1, input_shape=(1,)))
model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=my_learning_rate),
loss='mean_squared_error',
metrics=[tf.keras.metrics.RootMeanSquaredError()])
return model
# Function to train the model
def train_model(model, feature, label, epochs, batch_size):
history = model.fit(x=feature, y=label, batch_size=batch_size, epochs=epochs)
trained_weight = model.get_weights()[0][0]
trained_bias = model.get_weights()[1]
epochs = history.epoch
hist = pd.DataFrame(history.history)
rmse = hist["root_mean_squared_error"]
return trained_weight, trained_bias, epochs, rmse
# Function to plot the model
def plot_the_model(trained_weight, trained_bias, feature, label):
plt.figure(figsize=(10, 6))
plt.xlabel('Feature')
plt.ylabel('Label')
# Plot the feature values vs. label values
plt.scatter(feature, label, c='b')
# Create a red line representing the model
x0 = 0
y0 = trained_bias
x1 = feature[-1]
y1 = trained_bias + (trained_weight * x1)
plt.plot([x0, x1], [y0, y1], c='r')
st.pyplot(plt)
# Function to plot the loss curve
def plot_the_loss_curve(epochs, rmse):
plt.figure(figsize=(10, 6))
plt.xlabel('Epoch')
plt.ylabel('Root Mean Squared Error')
plt.plot(epochs, rmse, label='Loss')
plt.legend()
plt.ylim([rmse.min()*0.97, rmse.max()])
st.pyplot(plt)
# Define the dataset
my_feature = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0], dtype=float).reshape(-1, 1)
my_label = np.array([5.0, 8.8, 9.6, 14.2, 18.8, 19.5, 21.4, 26.8, 28.9, 32.0, 33.8, 38.2], dtype=float).reshape(-1, 1)
# Streamlit interface
st.title("Simple Linear Regression with Synthetic Data")
learning_rate = st.sidebar.slider('Learning Rate', min_value=0.001, max_value=1.0, value=0.01, step=0.01)
epochs = st.sidebar.slider('Epochs', min_value=1, max_value=1000, value=10, step=1)
batch_size = st.sidebar.slider('Batch Size', min_value=1, max_value=len(my_feature), value=12, step=1)
if st.sidebar.button('Run'):
my_model = build_model(learning_rate)
trained_weight, trained_bias, epochs, rmse = train_model(my_model, my_feature, my_label, epochs, batch_size)
st.subheader('Model Plot')
plot_the_model(trained_weight, trained_bias, my_feature, my_label)
st.subheader('Loss Curve')
plot_the_loss_curve(epochs, rmse)
|