Spaces:
Sleeping
Sleeping
File size: 7,619 Bytes
6c42acb da5d510 6c42acb 9346fae 6c42acb 9346fae 6c42acb da5d510 6c42acb 9346fae 6c42acb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import streamlit as st
import pandas as pd
# Example functions with explanations
def example1():
explanation = "Creating a DataFrame from a dictionary."
code = "df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]})\ndf"
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]})
return explanation, code, df
def example2():
explanation = "Creating a simple DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
return explanation, code, df
def example3():
explanation = "Reading a CSV file (using a sample DataFrame)."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf.to_csv('sample.csv', index=False)\ndf = pd.read_csv('sample.csv')\ndf"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df.to_csv('sample.csv', index=False)
df = pd.read_csv('sample.csv')
return explanation, code, df
def example4():
explanation = "Displaying the first few rows of a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf.head()"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
return explanation, code, df.head()
def example5():
explanation = "Selecting a column from a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf['A']"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
return explanation, code, df['A']
def example6():
explanation = "Selecting multiple columns from a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})\ndf[['A', 'C']]"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
return explanation, code, df[['A', 'C']]
def example7():
explanation = "Filtering rows based on a condition."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf[df['A'] > 1]"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
return explanation, code, df[df['A'] > 1]
def example8():
explanation = "Adding a new column to a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf['C'] = df['A'] + df['B']\ndf"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df['C'] = df['A'] + df['B']
return explanation, code, df
def example9():
explanation = "Dropping a column from a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})\ndf.drop('B', axis=1)"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
return explanation, code, df.drop('B', axis=1)
def example10():
explanation = "Renaming columns in a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf.rename(columns={'A': 'a', 'B': 'b'})"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
return explanation, code, df.rename(columns={'A': 'a', 'B': 'b'})
def example11():
explanation = "Handling missing data by filling NaNs."
code = "df = pd.DataFrame({'A': [1, 2, None], 'B': [4, None, 6]})\ndf.fillna(0)"
df = pd.DataFrame({'A': [1, 2, None], 'B': [4, None, 6]})
return explanation, code, df.fillna(0)
def example12():
explanation = "Handling missing data by dropping NaNs."
code = "df = pd.DataFrame({'A': [1, None, 3], 'B': [None, 5, 6]})\ndf.dropna()"
df = pd.DataFrame({'A': [1, None, 3], 'B': [None, 5, 6]})
return explanation, code, df.dropna()
def example13():
explanation = "Group by and aggregate a DataFrame."
code = "df = pd.DataFrame({'A': ['foo', 'bar', 'foo'], 'B': [1, 2, 3]})\ndf.groupby('A').sum()"
df = pd.DataFrame({'A': ['foo', 'bar', 'foo'], 'B': [1, 2, 3]})
return explanation, code, df.groupby('A').sum()
def example14():
explanation = "Merging two DataFrames."
code = "df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf2 = pd.DataFrame({'A': [1, 2, 3], 'C': [7, 8, 9]})\ndf1.merge(df2, on='A')"
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [1, 2, 3], 'C': [7, 8, 9]})
return explanation, code, df1.merge(df2, on='A')
def example15():
explanation = "Concatenating two DataFrames."
code = "df1 = pd.DataFrame({'A': [1, 2, 3]})\ndf2 = pd.DataFrame({'A': [4, 5, 6]})\npd.concat([df1, df2])"
df1 = pd.DataFrame({'A': [1, 2, 3]})
df2 = pd.DataFrame({'A': [4, 5, 6]})
return explanation, code, pd.concat([df1, df2])
def example16():
explanation = "Pivoting a DataFrame (using unique index)."
code = "df = pd.DataFrame({'A': ['foo', 'bar', 'baz'], 'B': ['one', 'two', 'one'], 'C': [1, 2, 3]})\ndf.pivot(index='A', columns='B', values='C')"
df = pd.DataFrame({'A': ['foo', 'bar', 'baz'], 'B': ['one', 'two', 'one'], 'C': [1, 2, 3]})
return explanation, code, df.pivot(index='A', columns='B', values='C')
def example17():
explanation = "Melting a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]})\npd.melt(df, id_vars=['A'], value_vars=['B', 'C'])"
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]})
return explanation, code, pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])
def example18():
explanation = "Applying a function to a DataFrame."
code = "df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf.apply(lambda x: x + 1)"
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
return explanation, code, df.apply(lambda x: x + 1)
def example19():
explanation = "Joining two DataFrames."
code = "df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\ndf2 = pd.DataFrame({'C': [7, 8, 9]}, index=[0, 1, 2])\ndf1.join(df2)"
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'C': [7, 8, 9]}, index=[0, 1, 2])
return explanation, code, df1.join(df2)
def example20():
explanation = "Sorting a DataFrame by a column."
code = "df = pd.DataFrame({'A': [3, 2, 1], 'B': [6, 5, 4]})\ndf.sort_values(by='A')"
df = pd.DataFrame({'A': [3, 2, 1], 'B': [6, 5, 4]})
return explanation, code, df.sort_values(by='A')
examples = [
("Example 1: Creating a DataFrame from a dictionary", example1),
("Example 2: Create a simple DataFrame", example2),
("Example 3: Read a CSV file", example3),
("Example 4: Display the first few rows of a DataFrame", example4),
("Example 5: Select a column from a DataFrame", example5),
("Example 6: Select multiple columns from a DataFrame", example6),
("Example 7: Filter rows based on a condition", example7),
("Example 8: Add a new column to a DataFrame", example8),
("Example 9: Drop a column from a DataFrame", example9),
("Example 10: Rename columns in a DataFrame", example10),
("Example 11: Handle missing data by filling NaNs", example11),
("Example 12: Handle missing data by dropping NaNs", example12),
("Example 13: Group by and aggregate a DataFrame", example13),
("Example 14: Merge two DataFrames", example14),
("Example 15: Concatenate two DataFrames", example15),
("Example 16: Pivot a DataFrame (using unique index)", example16),
("Example 17: Melt a DataFrame", example17),
("Example 18: Apply a function to a DataFrame", example18),
("Example 19: Join two DataFrames", example19),
("Example 20: Sort a DataFrame by a column", example20),
]
st.title("Pandas Course with Streamlit")
for title, func in examples:
st.header(title)
explanation, code, result = func()
st.write(explanation)
st.code(code)
if st.button(f"Run {title.split(':')[0]}"):
if result is not None:
st.write("Output:", result)
|