TensorFlowClass / pages /15_TransferLearning_HF.py
eaglelandsonce's picture
Update pages/15_TransferLearning_HF.py
ef623be verified
raw
history blame
3.24 kB
import streamlit as st
import tensorflow as tf
from transformers import ViTFeatureExtractor, TFAutoModelForImageClassification
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
# Load the dataset
dataset_name = "cats_vs_dogs"
(ds_train, ds_val), ds_info = tfds.load(dataset_name, split=['train[:80%]', 'train[80%:]'], with_info=True, as_supervised=True)
# Preprocess the dataset
def preprocess_image(image, label):
image = tf.image.resize(image, (224, 224)) # ViT requires 224x224 images
image = image / 255.0
return image, label
ds_train = ds_train.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)
ds_val = ds_val.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE)
# Streamlit app
st.title("Transfer Learning with Vision Transformer for Image Classification")
# Input parameters
batch_size = st.slider("Batch Size", 16, 128, 32, 16)
epochs = st.slider("Epochs", 5, 50, 10, 5)
# Load the pre-trained Vision Transformer model
model_name = "google/vit-base-patch16-224-in21k"
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
base_model = TFAutoModelForImageClassification.from_pretrained(model_name, num_labels=2) # Cats vs Dogs has 2 classes
# Freeze the base model
base_model.trainable = False
# Function to extract features using the feature extractor
def extract_features(images):
# Convert images to the expected format for the feature extractor
images = [tf.image.convert_image_dtype(image, tf.float32) for image in images]
inputs = feature_extractor(images, return_tensors="tf")
return inputs["pixel_values"]
# Add custom layers on top
inputs = tf.keras.Input(shape=(224, 224, 3))
features = extract_features([inputs])
x = base_model.vit(inputs).last_hidden_state[:, 0]
x = tf.keras.layers.Dense(256, activation='relu')(x)
x = tf.keras.layers.Dropout(0.5)(x)
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
model = tf.keras.Model(inputs, outputs)
model.summary()
# Compile the model
model.compile(optimizer='adam',
loss='binary_crossentropy', # Change loss function based on the number of classes
metrics=['accuracy'])
# Train the model
if st.button("Train Model"):
with st.spinner("Training the model..."):
history = model.fit(
ds_train,
epochs=epochs,
validation_data=ds_val
)
st.success("Model training completed!")
# Display training curves
st.subheader("Training and Validation Accuracy")
fig, ax = plt.subplots()
ax.plot(history.history['accuracy'], label='Training Accuracy')
ax.plot(history.history['val_accuracy'], label='Validation Accuracy')
ax.set_xlabel('Epoch')
ax.set_ylabel('Accuracy')
ax.legend()
st.pyplot(fig)
st.subheader("Training and Validation Loss")
fig, ax = plt.subplots()
ax.plot(history.history['loss'], label='Training Loss')
ax.plot(history.history['val_loss'], label='Validation Loss')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
ax.legend()
st.pyplot(fig)
# Evaluate the model
if st.button("Evaluate Model"):
test_loss, test_acc = model.evaluate(ds_val, verbose=2)
st.write(f"Validation accuracy: {test_acc}")