TensorFlowClass / pages /1_NumpyBasics.py
eaglelandsonce's picture
Rename pages/3_NumpyBasics.py to pages/1_NumpyBasics.py
bb1247e verified
raw
history blame
6.9 kB
import streamlit as st
import numpy as np
# Example functions with explanations
def example1():
explanation = "Importing the NumPy library."
code = "import numpy as np"
return explanation, code, None
def example2():
explanation = "Creating a simple NumPy array."
code = "array = np.array([1, 2, 3, 4, 5])\narray"
array = np.array([1, 2, 3, 4, 5])
return explanation, code, array
def example3():
explanation = "Creating an array with a range of values from 0 to 9."
code = "array = np.arange(10)\narray"
array = np.arange(10)
return explanation, code, array
def example4():
explanation = "Creating an array with 5 evenly spaced values between 0 and 1."
code = "array = np.linspace(0, 1, 5)\narray"
array = np.linspace(0, 1, 5)
return explanation, code, array
def example5():
explanation = "Reshaping a 2D array from shape (2, 3) to (3, 2)."
code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nreshaped_array = array.reshape((3, 2))\nreshaped_array"
array = np.array([[1, 2, 3], [4, 5, 6]])
reshaped_array = array.reshape((3, 2))
return explanation, code, reshaped_array
def example6():
explanation = "Slicing a 1D array to get elements from index 1 to 3."
code = "array = np.array([1, 2, 3, 4, 5])\narray[1:4]"
array = np.array([1, 2, 3, 4, 5])
sliced_array = array[1:4]
return explanation, code, sliced_array
def example7():
explanation = "Using fancy indexing to select specific elements from a 2D array."
code = "array = np.array([[1, 2], [3, 4], [5, 6]])\nfancy_indexed_array = array[[0, 1], [1, 0]]\nfancy_indexed_array"
array = np.array([[1, 2], [3, 4], [5, 6]])
fancy_indexed_array = array[[0, 1], [1, 0]]
return explanation, code, fancy_indexed_array
def example8():
explanation = "Using boolean indexing to select elements greater than 3."
code = "array = np.array([1, 2, 3, 4, 5])\nboolean_indexed_array = array[array > 3]\nboolean_indexed_array"
array = np.array([1, 2, 3, 4, 5])
boolean_indexed_array = array[array > 3]
return explanation, code, boolean_indexed_array
def example9():
explanation = "Performing element-wise multiplication of a 1D array by 2."
code = "array = np.array([1, 2, 3, 4, 5])\narray * 2"
array = np.array([1, 2, 3, 4, 5])
result = array * 2
return explanation, code, result
def example10():
explanation = "Calculating the sum of all elements in a 2D array."
code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nnp.sum(array)"
array = np.array([[1, 2, 3], [4, 5, 6]])
result = np.sum(array)
return explanation, code, result
def example11():
explanation = "Calculating the dot product of two matrices."
code = "matrix = np.array([[1, 2], [3, 4]])\nnp.dot(matrix, matrix)"
matrix = np.array([[1, 2], [3, 4]])
result = np.dot(matrix, matrix)
return explanation, code, result
def example12():
explanation = "Performing broadcasting by adding two 1D arrays element-wise."
code = "array = np.array([1, 2, 3])\narray + np.array([4, 5, 6])"
array = np.array([1, 2, 3])
result = array + np.array([4, 5, 6])
return explanation, code, result
def example13():
explanation = "Generating a 2x2 array with random values between 0 and 1."
code = "random_array = np.random.random((2, 2))\nrandom_array"
random_array = np.random.random((2, 2))
return explanation, code, random_array
def example14():
explanation = "Sorting a 1D array in ascending order."
code = "array = np.array([3, 1, 2])\nnp.sort(array)"
array = np.array([3, 1, 2])
sorted_array = np.sort(array)
return explanation, code, sorted_array
def example15():
explanation = "Finding the index of a value in a sorted array."
code = "array = np.array([1, 2, 3, 4, 5])\nnp.searchsorted(array, 3)"
array = np.array([1, 2, 3, 4, 5])
index = np.searchsorted(array, 3)
return explanation, code, index
def example16():
from skimage import data
explanation = "Calculating the mean value of an image."
code = "from skimage import data\nimage = data.camera()\nnp.mean(image)"
image = data.camera()
mean_value = np.mean(image)
return explanation, code, mean_value
def example17():
explanation = "Simulating random positions and velocities in a 2D space."
code = "positions = np.random.random((10, 2))\nvelocities = np.random.random((10, 2))\npositions + velocities"
positions = np.random.random((10, 2))
velocities = np.random.random((10, 2))
result = positions + velocities
return explanation, code, result
def example18():
explanation = "Calculating the mean of each column in a 2D array."
code = "data = np.random.random((100, 4))\nnp.mean(data, axis=0)"
data = np.random.random((100, 4))
mean_values = np.mean(data, axis=0)
return explanation, code, mean_values
def example19():
explanation = "Calculating the element-wise power of a 1D array."
code = "array = np.array([1, 2, 3])\nnp.power(array, 3)"
array = np.array([1, 2, 3])
result = np.power(array, 3)
return explanation, code, result
def example20():
explanation = "Calculating the cumulative sum of a 1D array."
code = "array = np.array([1, 2, 3, 4, 5])\nnp.cumsum(array)"
array = np.array([1, 2, 3, 4, 5])
result = np.cumsum(array)
return explanation, code, result
examples = [
("Example 1: Import NumPy", example1),
("Example 2: Create a simple array", example2),
("Example 3: Create an array with a range of values", example3),
("Example 4: Create an array with evenly spaced values using linspace", example4),
("Example 5: Reshape a 2D array", example5),
("Example 6: Slice a 1D array", example6),
("Example 7: Fancy indexing on a 2D array", example7),
("Example 8: Boolean indexing on a 1D array", example8),
("Example 9: Element-wise multiplication", example9),
("Example 10: Sum of all elements in a 2D array", example10),
("Example 11: Dot product of two matrices", example11),
("Example 12: Broadcasting example", example12),
("Example 13: Generate random numbers", example13),
("Example 14: Sort an array", example14),
("Example 15: Search for a value in a sorted array", example15),
("Example 16: Mean value of an image", example16),
("Example 17: Numerical simulation with random positions and velocities", example17),
("Example 18: Mean of each column in a 2D array", example18),
("Example 19: Element-wise power", example19),
("Example 20: Cumulative sum of an array", example20),
]
st.title("NumPy Course with Streamlit")
for title, func in examples:
st.header(title)
explanation, code, result = func()
st.write(explanation)
st.code(code)
if st.button(f"Run {title.split(':')[0]}"):
if result is not None:
st.write("Output:", result)