Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
import tensorflow_gnn as tfgnn | |
from tensorflow_gnn.models import mt_albis | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
# Set environment variable for legacy Keras | |
import os | |
os.environ['TF_USE_LEGACY_KERAS'] = '1' | |
# Define the model function | |
def model_fn(graph_tensor_spec: tfgnn.GraphTensorSpec): | |
graph = inputs = tf.keras.Input(type_spec=graph_tensor_spec) | |
# Encode input features to match the required output shape of 128 | |
graph = tfgnn.keras.layers.MapFeatures( | |
node_sets_fn=lambda node_set, node_set_name: tf.keras.layers.Dense(128)(node_set['features']) | |
)(graph) | |
# For each round of message passing... | |
for _ in range(2): | |
# ... create and apply a Keras layer. | |
graph = mt_albis.MtAlbisGraphUpdate( | |
units=128, message_dim=64, | |
attention_type="none", simple_conv_reduce_type="mean", | |
normalization_type="layer", next_state_type="residual", | |
state_dropout_rate=0.2, l2_regularization=1e-5, | |
receiver_tag=tfgnn.TARGET # Use TARGET instead of NODES | |
)(graph) | |
return tf.keras.Model(inputs, graph) | |
# Function to create a sample graph | |
def create_sample_graph(): | |
num_nodes = 10 | |
num_edges = 15 | |
graph = nx.gnm_random_graph(num_nodes, num_edges, directed=True) | |
# Create a GraphTensor | |
node_features = tf.random.normal((num_nodes, 128)) # Match the dense layer output | |
edge_features = tf.random.normal((num_edges, 32)) | |
graph_tensor = tfgnn.GraphTensor.from_pieces( | |
node_sets={ | |
"papers": tfgnn.NodeSet.from_fields( | |
sizes=[num_nodes], | |
features={"features": node_features} | |
) | |
}, | |
edge_sets={ | |
"cites": tfgnn.EdgeSet.from_fields( | |
sizes=[num_edges], | |
adjacency=tfgnn.Adjacency.from_indices( | |
source=("papers", tf.constant([e[0] for e in graph.edges()], dtype=tf.int32)), | |
target=("papers", tf.constant([e[1] for e in graph.edges()], dtype=tf.int32)) | |
), | |
features={"features": edge_features} | |
) | |
} | |
) | |
return graph, graph_tensor | |
# Streamlit app | |
def main(): | |
st.title("Graph Neural Network Architecture Visualization") | |
# Create sample graph | |
nx_graph, graph_tensor = create_sample_graph() | |
# Create and compile the model | |
model = model_fn(graph_tensor.spec) | |
model.compile(optimizer='adam', loss='binary_crossentropy') | |
# Display model summary | |
st.subheader("Model Summary") | |
model.summary(print_fn=lambda x: st.text(x)) | |
# Visualize the graph | |
st.subheader("Sample Graph Visualization") | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
pos = nx.spring_layout(nx_graph) | |
nx.draw(nx_graph, pos, with_labels=True, node_color='lightblue', | |
node_size=500, arrowsize=20, ax=ax) | |
st.pyplot(fig) | |
# Display graph tensor info | |
st.subheader("Graph Tensor Information") | |
st.text(f"Number of nodes: {graph_tensor.node_sets['papers'].total_size}") | |
st.text(f"Number of edges: {graph_tensor.edge_sets['cites'].total_size}") | |
st.text(f"Node feature shape: {graph_tensor.node_sets['papers']['features'].shape}") | |
st.text(f"Edge feature shape: {graph_tensor.edge_sets['cites']['features'].shape}") | |
if __name__ == "__main__": | |
main() | |