Spaces:
Sleeping
Sleeping
Create 17_Graph2.py
Browse files- pages/17_Graph2.py +110 -0
pages/17_Graph2.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import tensorflow_gnn as tfgnn
|
| 4 |
+
from tensorflow_gnn.models import mt_albis
|
| 5 |
+
import networkx as nx
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
# Set environment variable for legacy Keras
|
| 10 |
+
import os
|
| 11 |
+
os.environ['TF_USE_LEGACY_KERAS'] = '1'
|
| 12 |
+
|
| 13 |
+
# Define the model function
|
| 14 |
+
def model_fn(graph_tensor_spec: tfgnn.GraphTensorSpec):
|
| 15 |
+
graph = inputs = tf.keras.Input(type_spec=graph_tensor_spec)
|
| 16 |
+
|
| 17 |
+
# Encode input features to match the required output shape of 128
|
| 18 |
+
graph = tfgnn.keras.layers.MapFeatures(
|
| 19 |
+
node_sets_fn=lambda node_set, node_set_name: tf.keras.layers.Dense(128)(node_set['features'])
|
| 20 |
+
)(graph)
|
| 21 |
+
|
| 22 |
+
# For each round of message passing...
|
| 23 |
+
for _ in range(2):
|
| 24 |
+
# ... create and apply a Keras layer.
|
| 25 |
+
graph = mt_albis.MtAlbisGraphUpdate(
|
| 26 |
+
units=128, message_dim=64,
|
| 27 |
+
attention_type="none", simple_conv_reduce_type="mean",
|
| 28 |
+
normalization_type="layer", next_state_type="residual",
|
| 29 |
+
state_dropout_rate=0.2, l2_regularization=1e-5,
|
| 30 |
+
receiver_tag=tfgnn.TARGET # Use TARGET instead of NODES
|
| 31 |
+
)(graph)
|
| 32 |
+
|
| 33 |
+
return tf.keras.Model(inputs, graph)
|
| 34 |
+
|
| 35 |
+
# Function to create a sample graph with meaningful synthetic data
|
| 36 |
+
def create_sample_graph():
|
| 37 |
+
num_nodes = 10
|
| 38 |
+
num_edges = 15
|
| 39 |
+
|
| 40 |
+
graph = nx.gnm_random_graph(num_nodes, num_edges, directed=True)
|
| 41 |
+
|
| 42 |
+
# Create synthetic features
|
| 43 |
+
years_published = np.random.randint(1990, 2022, size=num_nodes).astype(np.float32)
|
| 44 |
+
num_authors = np.random.randint(1, 10, size=num_nodes).astype(np.float32)
|
| 45 |
+
citation_weights = np.random.uniform(0.1, 5.0, size=num_edges).astype(np.float32)
|
| 46 |
+
|
| 47 |
+
# Combine features into a single array per node
|
| 48 |
+
node_features = np.stack([years_published, num_authors], axis=-1)
|
| 49 |
+
edge_features = citation_weights.reshape(-1, 1)
|
| 50 |
+
|
| 51 |
+
graph_tensor = tfgnn.GraphTensor.from_pieces(
|
| 52 |
+
node_sets={
|
| 53 |
+
"papers": tfgnn.NodeSet.from_fields(
|
| 54 |
+
sizes=[num_nodes],
|
| 55 |
+
features={"features": tf.convert_to_tensor(node_features)}
|
| 56 |
+
)
|
| 57 |
+
},
|
| 58 |
+
edge_sets={
|
| 59 |
+
"cites": tfgnn.EdgeSet.from_fields(
|
| 60 |
+
sizes=[num_edges],
|
| 61 |
+
adjacency=tfgnn.Adjacency.from_indices(
|
| 62 |
+
source=("papers", tf.constant([e[0] for e in graph.edges()], dtype=tf.int32)),
|
| 63 |
+
target=("papers", tf.constant([e[1] for e in graph.edges()], dtype=tf.int32))
|
| 64 |
+
),
|
| 65 |
+
features={"features": tf.convert_to_tensor(edge_features)}
|
| 66 |
+
)
|
| 67 |
+
}
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return graph, graph_tensor
|
| 71 |
+
|
| 72 |
+
# Streamlit app
|
| 73 |
+
def main():
|
| 74 |
+
st.title("Graph Neural Network Architecture Visualization")
|
| 75 |
+
|
| 76 |
+
# Create sample graph
|
| 77 |
+
nx_graph, graph_tensor = create_sample_graph()
|
| 78 |
+
|
| 79 |
+
# Create and compile the model
|
| 80 |
+
model = model_fn(graph_tensor.spec)
|
| 81 |
+
model.compile(optimizer='adam', loss='binary_crossentropy')
|
| 82 |
+
|
| 83 |
+
# Display model summary
|
| 84 |
+
st.subheader("Model Summary")
|
| 85 |
+
model.summary(print_fn=lambda x: st.text(x))
|
| 86 |
+
|
| 87 |
+
# Visualize the graph
|
| 88 |
+
st.subheader("Sample Graph Visualization")
|
| 89 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 90 |
+
pos = nx.spring_layout(nx_graph)
|
| 91 |
+
nx.draw(nx_graph, pos, with_labels=True, node_color='lightblue',
|
| 92 |
+
node_size=500, arrowsize=20, ax=ax)
|
| 93 |
+
st.pyplot(fig)
|
| 94 |
+
|
| 95 |
+
# Display graph tensor info
|
| 96 |
+
st.subheader("Graph Tensor Information")
|
| 97 |
+
st.text(f"Number of nodes: {graph_tensor.node_sets['papers'].total_size}")
|
| 98 |
+
st.text(f"Number of edges: {graph_tensor.edge_sets['cites'].total_size}")
|
| 99 |
+
st.text(f"Node feature shape: {graph_tensor.node_sets['papers']['features'].shape}")
|
| 100 |
+
st.text(f"Edge feature shape: {graph_tensor.edge_sets['cites']['features'].shape}")
|
| 101 |
+
|
| 102 |
+
# Display sample node and edge features
|
| 103 |
+
st.subheader("Sample Node and Edge Features")
|
| 104 |
+
st.write("Node Features (Year Published, Number of Authors):")
|
| 105 |
+
st.write(node_features)
|
| 106 |
+
st.write("Edge Features (Citation Weight):")
|
| 107 |
+
st.write(edge_features)
|
| 108 |
+
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
main()
|