eaglelandsonce commited on
Commit
3610715
·
verified ·
1 Parent(s): c15b0e0

Update pages/6_Logistic_Regression.py

Browse files
Files changed (1) hide show
  1. pages/6_Logistic_Regression.py +67 -4
pages/6_Logistic_Regression.py CHANGED
@@ -8,6 +8,9 @@ from sklearn.preprocessing import StandardScaler
8
  from sklearn.metrics import accuracy_score, confusion_matrix
9
  from tensorflow.keras.models import Sequential
10
  from tensorflow.keras.layers import Dense
 
 
 
11
 
12
  # Load Iris dataset
13
  iris = load_iris()
@@ -26,13 +29,61 @@ scaler = StandardScaler()
26
  X_train = scaler.fit_transform(X_train)
27
  X_test = scaler.transform(X_test)
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  # Build the logistic regression model using Keras
30
  model = Sequential()
31
  model.add(Dense(1, input_dim=4, activation='sigmoid'))
32
  model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
33
 
 
 
 
 
 
 
 
 
 
34
  # Train the model
35
- model.fit(X_train, y_train, epochs=100, verbose=0)
36
 
37
  # Predict and evaluate the model
38
  y_pred_train = (model.predict(X_train) > 0.5).astype("int32")
@@ -43,9 +94,6 @@ test_accuracy = accuracy_score(y_test, y_pred_test)
43
 
44
  conf_matrix = confusion_matrix(y_test, y_pred_test)
45
 
46
- # Streamlit interface
47
- st.title('Logistic Regression with Keras on Iris Dataset')
48
-
49
  st.write('## Model Performance')
50
  st.write(f'Training Accuracy: {train_accuracy:.2f}')
51
  st.write(f'Testing Accuracy: {test_accuracy:.2f}')
@@ -73,3 +121,18 @@ if st.button('Predict'):
73
  prediction = (model.predict(input_data_scaled) > 0.5).astype("int32")
74
  st.write(f'Prediction: {"Setosa" if prediction[0][0] == 0 else "Versicolor"}')
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  from sklearn.metrics import accuracy_score, confusion_matrix
9
  from tensorflow.keras.models import Sequential
10
  from tensorflow.keras.layers import Dense
11
+ from tensorflow.keras.utils import plot_model
12
+ import io
13
+ from PIL import Image
14
 
15
  # Load Iris dataset
16
  iris = load_iris()
 
29
  X_train = scaler.fit_transform(X_train)
30
  X_test = scaler.transform(X_test)
31
 
32
+ # Streamlit interface
33
+ st.title('Logistic Regression with Keras on Iris Dataset')
34
+ st.write("""
35
+ ## Introduction
36
+ Logistic Regression is a statistical model used for binary classification tasks.
37
+ In this tutorial, we will use the Iris dataset to classify whether a flower is
38
+ **Setosa** or **Versicolor** based on its features.
39
+ """)
40
+
41
+ # Display Iris dataset information
42
+ st.write("### Iris Dataset")
43
+ st.write("""
44
+ The Iris dataset contains 150 samples of iris flowers, each described by four features:
45
+ sepal length, sepal width, petal length, and petal width. There are three classes: Setosa, Versicolor, and Virginica.
46
+ For this example, we'll only use the Setosa and Versicolor classes.
47
+ """)
48
+
49
+ # Display flower images
50
+ st.write("### Flower Images")
51
+ col1, col2 = st.columns(2)
52
+ with col1:
53
+ st.image("https://upload.wikimedia.org/wikipedia/commons/5/56/Iris_setosa_2.jpg", caption="Iris Setosa", use_column_width=True)
54
+ with col2:
55
+ st.image("https://upload.wikimedia.org/wikipedia/commons/4/41/Iris_versicolor_3.jpg", caption="Iris Versicolor", use_column_width=True)
56
+
57
+ # Plotting sample data
58
+ st.write("### Sample Data Distribution")
59
+ fig, ax = plt.subplots()
60
+ for i, color in zip([0, 1], ['blue', 'orange']):
61
+ idx = np.where(y == i)
62
+ ax.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], edgecolor='k')
63
+ ax.set_xlabel(iris.feature_names[0])
64
+ ax.set_ylabel(iris.feature_names[1])
65
+ ax.legend()
66
+ st.pyplot(fig)
67
+
68
+ # User input for number of epochs
69
+ epochs = st.slider('Select number of epochs for training:', min_value=10, max_value=200, value=100, step=10)
70
+
71
  # Build the logistic regression model using Keras
72
  model = Sequential()
73
  model.add(Dense(1, input_dim=4, activation='sigmoid'))
74
  model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
75
 
76
+ # Display the model architecture
77
+ st.write("### Model Architecture")
78
+ st.write(model.summary())
79
+ fig, ax = plt.subplots()
80
+ buf = io.BytesIO()
81
+ plot_model(model, to_file=buf, show_shapes=True, show_layer_names=True)
82
+ buf.seek(0)
83
+ st.image(buf, caption='Logistic Regression Model Architecture', use_column_width=True)
84
+
85
  # Train the model
86
+ model.fit(X_train, y_train, epochs=epochs, verbose=0)
87
 
88
  # Predict and evaluate the model
89
  y_pred_train = (model.predict(X_train) > 0.5).astype("int32")
 
94
 
95
  conf_matrix = confusion_matrix(y_test, y_pred_test)
96
 
 
 
 
97
  st.write('## Model Performance')
98
  st.write(f'Training Accuracy: {train_accuracy:.2f}')
99
  st.write(f'Testing Accuracy: {test_accuracy:.2f}')
 
121
  prediction = (model.predict(input_data_scaled) > 0.5).astype("int32")
122
  st.write(f'Prediction: {"Setosa" if prediction[0][0] == 0 else "Versicolor"}')
123
 
124
+ # Examples of different parameters for each flower type
125
+ st.write('## Examples of Parameters')
126
+ st.write("""
127
+ ### Iris Setosa:
128
+ - Sepal Length: 5.1 cm
129
+ - Sepal Width: 3.5 cm
130
+ - Petal Length: 1.4 cm
131
+ - Petal Width: 0.2 cm
132
+
133
+ ### Iris Versicolor:
134
+ - Sepal Length: 7.0 cm
135
+ - Sepal Width: 3.2 cm
136
+ - Petal Length: 4.7 cm
137
+ - Petal Width: 1.4 cm
138
+ """)